Resposta:
[tex]\Large \textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\Large \boxed{\sf \dfrac{2x - 1}{3} + \dfrac{x + 3}{2} < 2x + 1}[/tex]
[tex]\Large \boxed{\sf \dfrac{\not 6}{1}\:.\:\dfrac{2x - 1}{\not 3} +\dfrac{\not 6}{1}\:.\: \dfrac{x + 3}{\not 2} < \dfrac{6}{1}\:.\:(2x + 1)}[/tex]
[tex]\Large \boxed{\sf 2\:.\:(2x - 1) + 3\:.\:(x + 3) < 6\:.\:(2x + 1)}[/tex]
[tex]\Large \boxed{\sf (4x - 2) + (3x + 9) < (12x + 6)}[/tex]
[tex]\Large \boxed{\sf 7x + 7 < 12x + 6}[/tex]
[tex]\Large \boxed{\sf 7x - 12x < 6 - 7}[/tex]
[tex]\Large \boxed{\sf -5x < -1}[/tex]
[tex]\Large \boxed{\sf 5x > 1}[/tex]
[tex]\Large \boxed{\boxed{\sf x > \dfrac{1}{5}}}[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Resposta:
[tex]\Large \textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\Large \boxed{\sf \dfrac{2x - 1}{3} + \dfrac{x + 3}{2} < 2x + 1}[/tex]
[tex]\Large \boxed{\sf \dfrac{\not 6}{1}\:.\:\dfrac{2x - 1}{\not 3} +\dfrac{\not 6}{1}\:.\: \dfrac{x + 3}{\not 2} < \dfrac{6}{1}\:.\:(2x + 1)}[/tex]
[tex]\Large \boxed{\sf 2\:.\:(2x - 1) + 3\:.\:(x + 3) < 6\:.\:(2x + 1)}[/tex]
[tex]\Large \boxed{\sf (4x - 2) + (3x + 9) < (12x + 6)}[/tex]
[tex]\Large \boxed{\sf 7x + 7 < 12x + 6}[/tex]
[tex]\Large \boxed{\sf 7x - 12x < 6 - 7}[/tex]
[tex]\Large \boxed{\sf -5x < -1}[/tex]
[tex]\Large \boxed{\sf 5x > 1}[/tex]
[tex]\Large \boxed{\boxed{\sf x > \dfrac{1}{5}}}[/tex]