3) UM VENDEDOR RECEBE UM SALÁRIO FIXO DE R$ 2.400,00, ELE RECEBE TAMBÉM UMA COMISSÃO DE 8% SOBRE AS VENDAS QUE PRATICA EM UM DETERMINADO PERÍODO. FAÇA O QUE SE PEDE ABAIXO: A) CONSTRUA UMA LEI DE FORMAÇÃO PARA DEFINIR O SALÁRIC DESSE VENDEDOR NO PERÍODO. SENDO "S" O SEU SALÁRIO E "T" O TEMPO. B) CALCULE O SEU SALÁRIO (S) NO PERÍODO DE UM MÊS(T)
Considerando os princípios da formação da função do 1° grau, tem-se:
a) lei de formação: S = (8/100 * T) + 2400
b) salário no período de um mês: S = 5.760 reais
Função do 1° grau
As funções do 1° grau são formadas por expressões algébricas, que são aquelas expressões matemáticas que tem como componentes:
números (ex. 1, 2, 10, 30);
letras (ex. x, y, w, a, b);
operações (ex. *, /, +, -).
Para construir a lei de formação que define o salário do vendedor no período, consideramos o salário fixo de R$ 2.400,00 como um valor constante. A comissão de 8% sobre as vendas é uma taxa variável que depende do valor total de vendas realizado no período.
Com isso, temos que a lei de formação é:
f(x) = ax + b
f(x) = comissão * período + salário fixo
S = (8/100 * T) + 2400
Para o salário (S) no período de um mês (T), fica:
S = 2400 + 0,08 * 30
S = 2400 + 2,4
S = 5.760 reais
Aprenda mais sobre Função do 1° grau em: brainly.com.br/tarefa/55643088
Lista de comentários
Considerando os princípios da formação da função do 1° grau, tem-se:
Função do 1° grau
As funções do 1° grau são formadas por expressões algébricas, que são aquelas expressões matemáticas que tem como componentes:
Para construir a lei de formação que define o salário do vendedor no período, consideramos o salário fixo de R$ 2.400,00 como um valor constante. A comissão de 8% sobre as vendas é uma taxa variável que depende do valor total de vendas realizado no período.
Com isso, temos que a lei de formação é:
f(x) = ax + b
f(x) = comissão * período + salário fixo
S = (8/100 * T) + 2400
Para o salário (S) no período de um mês (T), fica:
S = 2400 + 0,08 * 30
S = 2400 + 2,4
S = 5.760 reais
Aprenda mais sobre Função do 1° grau em: brainly.com.br/tarefa/55643088
#SPJ1