Resposta:
e) {x ∈ IR | x > - 1}
Explicação passo a passo:
[tex]3^{x-3} > \left(\dfrac{1}{9}\right)^{x+3}\to 3^{x-3} > \left(\dfrac{1}{3^{2}}\right)^{x+3}\to 3^{x-3} > \left(3^{-2}\right)^{x+3}\to\\\\\\\\3^{x-3} > \left(3^{-2}\right)^{x+3}\to 3^{x-3} > 3^{-2\cdot (x+3)}\to 3^{x-3} > 3^{-2x-6}\to\\\\\\x-3 > -2x-6\\\\x+2x > -6+3 \\\\x+2x > -6+3\\\\3x > -3\\\\\\x > \dfrac{-3}{3}\to x > -1[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Resposta:
e) {x ∈ IR | x > - 1}
Explicação passo a passo:
[tex]3^{x-3} > \left(\dfrac{1}{9}\right)^{x+3}\to 3^{x-3} > \left(\dfrac{1}{3^{2}}\right)^{x+3}\to 3^{x-3} > \left(3^{-2}\right)^{x+3}\to\\\\\\\\3^{x-3} > \left(3^{-2}\right)^{x+3}\to 3^{x-3} > 3^{-2\cdot (x+3)}\to 3^{x-3} > 3^{-2x-6}\to\\\\\\x-3 > -2x-6\\\\x+2x > -6+3 \\\\x+2x > -6+3\\\\3x > -3\\\\\\x > \dfrac{-3}{3}\to x > -1[/tex]