Articles
Register
Sign In
Search
babacar12
@babacar12
June 2021
1
207
Report
aider moi à exprimer cos(3x) en fonction de cosx et sin(3x) en fonction de sinx svp c est urgent pour continuer mon exercice
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
MichaelS
Verified answer
Cos(a+b)=cos(a)cos(b) - sin(a)sin(b)
sin(a+b)=sin(a)cos(b) + cos(a)sin(b)
sin²(x)+cos²(x)=1
cos(3x)=cos(2x+x)
cos(3x)=
cos(2x).cos(x) - sin(2x).sin(x)
cos(3x)=
cos(x+x).cos(x) -sin(x+x).sin(x)
cos(3x)=
((cos(x).cos(x))-(sin(x).sin(x)).cosx)-((sin(x).cos(x) + cos(x).sin(x)). sin(x))
cos(3x)=
(cos³
(x)- sin²(x).cos(x)) - (sin²(x).cos(x) -sin²(x).cos(x))
cos(3x)=
cos³
(x)- 3 sin²(x).cos(x)
cos(3x)=
cos³
(x)- 3(1- cos²(x)).cos(x)
cos(3x)=
cos³
(x)+(-3 + 3cos²(x)).cos(x)
cos(3x)=
cos³(x)-3cosx+3cos³
(x)
cos(3x)=
4cos
³
(x)-3cos(x)
sin(3x)=sin(2x+x)
sin(3x)=sin(2x)cos(x)+cos(2x)sin(2x)
sin(3x)=
2sin(x).cos²(x) + (1-2sin²(x)).sin(x)
sin(3x)=
2sin(x).(1-sin²(x)] + (1-2sin²(x)).sin(x)
sin(3x)=
sin(x).(2-2sin²(x)) + (1-2sin²(x)].sin(x)
sin(3x)=
sin(x).(2-2sin²(x)+1-2sin²(x))
sin(3x)=
sin(x).(3-4sin²(x))
sin(3x)=
3sin(x)-4sin³(x)
sin(3x)=
-4sin³(x)+3sin(x)
12 votes
Thanks 30
More Questions From This User
See All
babacar12
June 2021 | 0 Respostas
Demontrer que tan3x=tanx +3-tan^2x/1-3tan^2x
Responda
babacar12
June 2021 | 0 Respostas
exo 34 comment on resoud
Responda
×
Report "aider moi à exprimer cos(3x) en fonction de cosx et sin(3x) en fonction de sinx svp c est urgent pou.... Pergunta de ideia de babacar12"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Cos(a+b)=cos(a)cos(b) - sin(a)sin(b)sin(a+b)=sin(a)cos(b) + cos(a)sin(b)
sin²(x)+cos²(x)=1
cos(3x)=cos(2x+x)
cos(3x)=cos(2x).cos(x) - sin(2x).sin(x)
cos(3x)= cos(x+x).cos(x) -sin(x+x).sin(x)
cos(3x)= ((cos(x).cos(x))-(sin(x).sin(x)).cosx)-((sin(x).cos(x) + cos(x).sin(x)). sin(x))
cos(3x)= (cos³(x)- sin²(x).cos(x)) - (sin²(x).cos(x) -sin²(x).cos(x))
cos(3x)= cos³(x)- 3 sin²(x).cos(x)
cos(3x)=cos³(x)- 3(1- cos²(x)).cos(x)
cos(3x)=cos³(x)+(-3 + 3cos²(x)).cos(x)
cos(3x)=cos³(x)-3cosx+3cos³(x)
cos(3x)=4cos³(x)-3cos(x)
sin(3x)=sin(2x+x)
sin(3x)=sin(2x)cos(x)+cos(2x)sin(2x)
sin(3x)=2sin(x).cos²(x) + (1-2sin²(x)).sin(x)
sin(3x)=2sin(x).(1-sin²(x)] + (1-2sin²(x)).sin(x)
sin(3x)=sin(x).(2-2sin²(x)) + (1-2sin²(x)].sin(x)
sin(3x)=sin(x).(2-2sin²(x)+1-2sin²(x))
sin(3x)=sin(x).(3-4sin²(x))
sin(3x)=3sin(x)-4sin³(x)
sin(3x)=-4sin³(x)+3sin(x)