bjr
g(x) = 2x + (5x² + 2x) / (x² - 1)
= [2x (x² - 1) + (5x² + 2x)] / (x² - 1)
= (2x³ - 2x + 5x² + 2x) / (x² - 1)
= (2x³ + 5x²) / (x² - 1)
(u/v)' = (u'v - uv') / v²
calcul du numérateur de la dérivée
u : 2x³ + 5x² v : x² - 1
u' : 6x² + 10x v' : 2x
num : (6x² + 10x)(x² - 1) - (2x³ + 5x²)*2x =
(6x⁴ - 6x² + 10x³ - 10x) - (4x⁴ + 10x³) =
6x⁴ - 6x² + 10x³ - 10x - 4x⁴ - 10x³ =
2x⁴ - 6x² - 10x
g'(x) = (2x⁴ - 6x² - 10x) / (x² - 1)²
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
bjr
g(x) = 2x + (5x² + 2x) / (x² - 1)
= [2x (x² - 1) + (5x² + 2x)] / (x² - 1)
= (2x³ - 2x + 5x² + 2x) / (x² - 1)
= (2x³ + 5x²) / (x² - 1)
(u/v)' = (u'v - uv') / v²
calcul du numérateur de la dérivée
u : 2x³ + 5x² v : x² - 1
u' : 6x² + 10x v' : 2x
num : (6x² + 10x)(x² - 1) - (2x³ + 5x²)*2x =
(6x⁴ - 6x² + 10x³ - 10x) - (4x⁴ + 10x³) =
6x⁴ - 6x² + 10x³ - 10x - 4x⁴ - 10x³ =
2x⁴ - 6x² - 10x
g'(x) = (2x⁴ - 6x² - 10x) / (x² - 1)²