Un électricien réclame un salaire de base fixe pour les frais de deplacement et un tarif horaire . Il a encaissé $210 pour 8 heures et $150 pour un travail qui a duré 5 heures a) Déterminez l'équation de la fonction affine qui traduit la relation entre le salaire de l'électricien et le nombre d'heures de travail b) Quel sera son salaire s'il travaille pendant deux semaines et 5 jours? (selon le code du travail)
b) 2 semaines = 5*2 = 10jours (5jours de travail/semaine)
15 jours de travail soit 35*2+5*7=105h (35h /semaine et 7h/jours)
si il prend chaque jour les frais de deplacement = 20*15=300$
mo : 105*26=2730$
salaire : 3030$
Explications étape par étape :
1 votes Thanks 4
croisierfamily
cher Tom, comme Tu as 60 €uros pour 3 heures de boulot --> cela fait un tarif horaire de 20 €/heure ( calcul mental ! ) --> Tu devrais éviter de répondre en état de faiblesse ( hypoglycémie par exemple ), cela nuit à l' image de sérieux du site ! ☺
Lista de comentários
Réponse :
x= le deplacement
y= le tarif horaire
a)x+8y=210
x+5y=150
-1(x+8y) = 210--->-x-8y=-210
-x-8y=-210
x+5y=150
-3y=-60
x= 20
20$ =frais de deplacement
x+5y=150
5y=150-20
y=26
26e l'heure
f(y) = 26y+20
b) 2 semaines = 5*2 = 10jours (5jours de travail/semaine)
15 jours de travail soit 35*2+5*7=105h (35h /semaine et 7h/jours)
si il prend chaque jour les frais de deplacement = 20*15=300$
mo : 105*26=2730$
salaire : 3030$
Explications étape par étape :
Réponse :
Explications étape par étape :
■ on doit résoudre ce système :
8h + f = 210 ET 5h + f = 150
par SOUSTRACTION :
3h = 60 d' où h = 20 €uros/heure .
d' où fixe = 150 - 5*20 = 150 - 100 = 50 €uros .
= 50 €uros .
■ conclusion :
équation de la fonction affine : y = 20x + 50
avec x = nombre d' heures de travail
y = salaire
■ application pour 2 semaines et 5 jours de travail :
cela ferait 2*7 + 5 = 19 jours de travail
--> 19*7 = 133 heures de travail
( car 7 heures de travail/jour * 5 jours
= 35 heures/semaine ♥ )
--> salaire = 20*133 + 50*19 = 3610 €uros !!