a) x² - 4x = 0
⇔ x(x - 4) = 0 ← Résultat nul si x = 0 ou (x-4) = 0
x - 4 = 0
x = 4
S = {0;4}
b) 2x² + 3 = 0
⇔ 2(x² + 1.5) = 0 ← Résultat nul si (x² + 1.5) = 0
x² + 1.5 = 0
x² = -1.5
S = {∅}
c) x² - 5 = 0
⇔ (x - √5)(x + √5) = 0 ← Résultat nul si (x - √5) = 0 ou (x + √5) = 0
x - √5 = 0
x = √5
x + √5 = 0
x = -√5
S = {-√5;√5}
d) (2x-5)² - 9 = 0
⇔ ((2x-5) - 3)((2x-5) + 3) = 0 ← Résultat nul si ((2x-5) - 3) = 0 ou ((2x-5) + 3) = 0
((2x-5) - 3) = 0
2x - 5 - 3 = 0
2x - 8 = 0
2x = 8
x = 8/2 = 4
((2x-5) + 3) = 0
2x - 5 + 3 = 0
2x - 2 = 0
2x = 2
x = 2/2 = 1
S = {1;4}
e) -x² + 6x - 9 = 0
⇔ - (x² - 6x + 9) = 0
⇔ - (x-3)² = 0 ← Résultat nul si (x-3) = 0
x - 3 = 0
x = 3
S = {3}
Bonjour,
x²-4x= x(x-1)
x(x-1)=
0x= 0 ou x= 1 S= {0 ; -1}
2x²+3= 0 pas de solutions. S= { Ф }
(2x-5)²-9= (2x-5)²- 3²
(2x-5)-3²= 0
(2x-5-3)(2x-5+3)= 0
(2x-8)(2x-2)= 0
x= 4 ou x= 1 S= {1 ; 4}
-x²+6x-9= -(x-3)² trouve la ou les solutions .
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
a) x² - 4x = 0
⇔ x(x - 4) = 0 ← Résultat nul si x = 0 ou (x-4) = 0
x - 4 = 0
x = 4
S = {0;4}
b) 2x² + 3 = 0
⇔ 2(x² + 1.5) = 0 ← Résultat nul si (x² + 1.5) = 0
x² + 1.5 = 0
x² = -1.5
S = {∅}
c) x² - 5 = 0
⇔ (x - √5)(x + √5) = 0 ← Résultat nul si (x - √5) = 0 ou (x + √5) = 0
x - √5 = 0
x = √5
x + √5 = 0
x = -√5
S = {-√5;√5}
d) (2x-5)² - 9 = 0
⇔ ((2x-5) - 3)((2x-5) + 3) = 0 ← Résultat nul si ((2x-5) - 3) = 0 ou ((2x-5) + 3) = 0
((2x-5) - 3) = 0
2x - 5 - 3 = 0
2x - 8 = 0
2x = 8
x = 8/2 = 4
((2x-5) + 3) = 0
2x - 5 + 3 = 0
2x - 2 = 0
2x = 2
x = 2/2 = 1
S = {1;4}
e) -x² + 6x - 9 = 0
⇔ - (x² - 6x + 9) = 0
⇔ - (x-3)² = 0 ← Résultat nul si (x-3) = 0
x - 3 = 0
x = 3
S = {3}
Verified answer
Bonjour,
x²-4x= x(x-1)
x(x-1)=
0x= 0 ou x= 1 S= {0 ; -1}
2x²+3= 0 pas de solutions. S= { Ф }
(2x-5)²-9= (2x-5)²- 3²
(2x-5)-3²= 0
(2x-5-3)(2x-5+3)= 0
(2x-8)(2x-2)= 0
x= 4 ou x= 1 S= {1 ; 4}
-x²+6x-9= -(x-3)² trouve la ou les solutions .