January 2021 0 73 Report
Bonjour à tous C'EST URGENT, AIDER MOI SVP. Merci d'avance à celui qui pourra me répondre et à ceux qui essayeront ! (19 points) Pour fabriquer une boîte parallélépipédique, on dispose d'une plaquette carrée de 6 dm de côté dans laquelle on découpe à chaque coin un carré de côté x dm. On obtient ainsi le patron d'une boîte sans couvercle.
Soit V la fonction qui à la longueur x associe le volume V(x) de la boite.
("^"= puissance)
1. a. Justifier que l'ensemble de définition de la fonction V est l'intervalle [0 ; 3].
b. Déterminer, en fonction de x, les dimensions de cette boîte.
c. En déduire que pour tout réel x de l'intervalle [0 ; 3], V(x) = 4x^3-24x² + 36 x
2. Calculer V(1,5). Interpréter concrètement ce résultat.
3. Pour quelle(s) valeur(s) de x obtient-on un cube ? Quel est alors le volume de cette boîte ?
4. Compléter le tableau de valeurs à l'aide de la calculatrice.
x 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
V(x)
5. Conjecturer graphiquement le volume maximal de la boîte après avoir fait la représentation graphique de la fonction V. Pour quelle valeur de x est-il atteint ?
7. Vérifier que, pour tout réel x de l'intervalle [0 ; 3], V(x)- 16 = 4 (x -1)² (x - 4)
8. En déduire que V(x) est plus petit ou égale à 16 pour tout x dans l'intervalle [0;3]. Ceci permet-il de valider la conjecture ?

Encore merci à ceux qui m'aideront ! Et bonne fin de journée.
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.
More Questions From This User See All

Helpful Social

Copyright © 2025 ELIBRARY.TIPS - All rights reserved.