Articles
Register
Sign In
Search
An0nyme1
@An0nyme1
May 2019
1
98
Report
Bonjour,
J’ai besoin d’aide pour cet exercice de trigonométrie (exercice 17 page 161, collection Math’x, éditions Didier).
Merci d’avance.
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
patmat
Verified answer
A(0) = (cos 0 + sin 0)² + (cos 0 - sin 0)² → (1+0)² + (1-0)² = 2
A(π/4)=(cos π/4 + sin π/4)² + (cos π/4 - sin π/4)² → (√2/2+√2/2)² +(√2/2-√2)
²= 2
A(π/4)=(cos π/3 + sin π/3)² + (cos π/3 - sin π/3)² → (1/2+√3/2)² +(1/2-√3/2)
²= 2
∀x , A(x) = (cos x + sin x)² + (cos x - sin x)² →
A(x) = cos²x + 2sinxcosx + sin²x + cos²x - 2sinxcosx + sin²x = 2sin²x+2cos²x
A(x) = 2(sin²x+cos²x) = 2(1) = 2
Donc ∀x , (cos x + sin x)² + (cos x - sin x)
² = 2
0 votes
Thanks 1
More Questions From This User
See All
An0nyme1
January 2021 | 0 Respostas
Responda
An0nyme1
January 2021 | 0 Respostas
Responda
An0nyme1
January 2021 | 0 Respostas
Responda
An0nyme1
January 2021 | 0 Respostas
Responda
An0nyme1
January 2021 | 0 Respostas
Responda
An0nyme1
October 2020 | 0 Respostas
Responda
An0nyme1
October 2020 | 0 Respostas
Responda
An0nyme1
October 2020 | 0 Respostas
Responda
An0nyme1
October 2020 | 0 Respostas
Responda
An0nyme1
October 2020 | 0 Respostas
Responda
×
Report "Bonjour, J’ai besoin d’aide pour cet exercice de trigonométrie (exercice 17 page 161, collection Mat.... Pergunta de ideia de An0nyme1"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
A(0) = (cos 0 + sin 0)² + (cos 0 - sin 0)² → (1+0)² + (1-0)² = 2A(π/4)=(cos π/4 + sin π/4)² + (cos π/4 - sin π/4)² → (√2/2+√2/2)² +(√2/2-√2)²= 2
A(π/4)=(cos π/3 + sin π/3)² + (cos π/3 - sin π/3)² → (1/2+√3/2)² +(1/2-√3/2)²= 2
∀x , A(x) = (cos x + sin x)² + (cos x - sin x)² →
A(x) = cos²x + 2sinxcosx + sin²x + cos²x - 2sinxcosx + sin²x = 2sin²x+2cos²x
A(x) = 2(sin²x+cos²x) = 2(1) = 2
Donc ∀x , (cos x + sin x)² + (cos x - sin x)² = 2