Réponse:
Bonjour,
a.
[tex]d = (2x - 3)(3x - 1) + (2x - 3)(2x - 3) \\ = (2x \times 3x - 1 \times 2x - 3 \times 3x - 3 \times ( - 1)) + (2x \times 2x - 3 \times 2x - 3 \times 2x - 3 \times ( - 3)) \\ = 6 {x}^{2} - 2x - 9x - ( - 3) + 4 {x}^{2} - 6x - 6x - ( - 9) \\ = 10 {x}^{2} - 23x - ( - 3) - ( - 9) \\ = 10 {x}^{2} - 23x + 3 + 9 \\ = 10 {x}^{2} - 23x + 12[/tex]
b.
[tex]d = (2x - 3)(3x - 1) + (2x - 3)(2x - 3) \\ = (2x - 3)((3x - 1 )+ (2x - 3)) \\ = (2x - 3)(3x - 1 + 2x - 3) \\ = (2x - 3)(5x -4)[/tex]
c.
[tex](2x - 3)(5x - 4) = 0[/tex]
C'est un produit nul donc
[tex]2x - 3 = 0 \\ 2x - 3 + 3 = 0 + 3 \\ 2x = 3 \\ \frac{2x}{2} = \frac{3}{2} \\ x = 1.5[/tex]
ou
[tex]5x - 4 = 0 \\ 5x - 4 + 4 = 0 + 4 \\ 5x = 4 \\ \frac{5x}{5} = \frac{4}{5} \\ x = 0.8[/tex]
Il y a donc deux solutions : 0.8 et 1.5
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Réponse:
Bonjour,
a.
[tex]d = (2x - 3)(3x - 1) + (2x - 3)(2x - 3) \\ = (2x \times 3x - 1 \times 2x - 3 \times 3x - 3 \times ( - 1)) + (2x \times 2x - 3 \times 2x - 3 \times 2x - 3 \times ( - 3)) \\ = 6 {x}^{2} - 2x - 9x - ( - 3) + 4 {x}^{2} - 6x - 6x - ( - 9) \\ = 10 {x}^{2} - 23x - ( - 3) - ( - 9) \\ = 10 {x}^{2} - 23x + 3 + 9 \\ = 10 {x}^{2} - 23x + 12[/tex]
b.
[tex]d = (2x - 3)(3x - 1) + (2x - 3)(2x - 3) \\ = (2x - 3)((3x - 1 )+ (2x - 3)) \\ = (2x - 3)(3x - 1 + 2x - 3) \\ = (2x - 3)(5x -4)[/tex]
c.
[tex](2x - 3)(5x - 4) = 0[/tex]
C'est un produit nul donc
[tex]2x - 3 = 0 \\ 2x - 3 + 3 = 0 + 3 \\ 2x = 3 \\ \frac{2x}{2} = \frac{3}{2} \\ x = 1.5[/tex]
ou
[tex]5x - 4 = 0 \\ 5x - 4 + 4 = 0 + 4 \\ 5x = 4 \\ \frac{5x}{5} = \frac{4}{5} \\ x = 0.8[/tex]
Il y a donc deux solutions : 0.8 et 1.5