Articles
Register
Sign In
Search
ebru7158
@ebru7158
January 2021
1
124
Report
Bonjour j'ai des exercices de maths a faire mais je ne comprends pas pouvez-vous m'aider svpp merci d'avance
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
il y a 9.10^(k-1) nombres à k chiffres.
10 ≤ m ≤ (999...99)barre
⇒ 1/10 ≥ 1/m ≥ 1/(999...99)barre
⇒ 1/m ≥ 1/(100...000)barre
soit 1/m ≥ 1/10^k
On en déduit :
H(10^k - 1) - H(10^k - 2) ≥ 9x10^(k-1) x 1/10^k
⇒ H(10^k - 1) - H(10^k - 2) ≥ 9/10
Idem H(10^k - 2) - H(10^k - 3) ≥ 9/10
...
donc H(10^k - 1) ≥ k x 9/10
(désolé pour la rédaction mais c'est galère à noter ici)
On en déduit que si k → + ∞, lim (Hn) = +∞
5) Pn = 1 + 1/2 + ... + 1/n cm
lim Pn = +∞
Donc, la fourmi n'atteindra jamais le bout de la corde
1 votes
Thanks 1
More Questions From This User
See All
ebru7158
December 2022 | 0 Respostas
Responda
ebru7158
December 2022 | 0 Respostas
Responda
ebru7158
December 2022 | 0 Respostas
Responda
ebru7158
December 2022 | 0 Respostas
Responda
ebru7158
January 2021 | 0 Respostas
Responda
ebru7158
January 2021 | 0 Respostas
Responda
ebru7158
January 2021 | 0 Respostas
Responda
ebru7158
January 2021 | 0 Respostas
Responda
ebru7158
January 2021 | 0 Respostas
Responda
ebru7158
January 2021 | 0 Respostas
Responda
×
Report "Bonjour j'ai des exercices de maths a faire mais je ne comprends pas pouvez-vous m'aider svpp merci .... Pergunta de ideia de ebru7158"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,il y a 9.10^(k-1) nombres à k chiffres.
10 ≤ m ≤ (999...99)barre
⇒ 1/10 ≥ 1/m ≥ 1/(999...99)barre
⇒ 1/m ≥ 1/(100...000)barre
soit 1/m ≥ 1/10^k
On en déduit :
H(10^k - 1) - H(10^k - 2) ≥ 9x10^(k-1) x 1/10^k
⇒ H(10^k - 1) - H(10^k - 2) ≥ 9/10
Idem H(10^k - 2) - H(10^k - 3) ≥ 9/10
...
donc H(10^k - 1) ≥ k x 9/10
(désolé pour la rédaction mais c'est galère à noter ici)
On en déduit que si k → + ∞, lim (Hn) = +∞
5) Pn = 1 + 1/2 + ... + 1/n cm
lim Pn = +∞
Donc, la fourmi n'atteindra jamais le bout de la corde