Articles
Register
Sign In
Search
Kingkylie21
@Kingkylie21
May 2019
1
60
Report
Bonjour, j'ai un dm de math que je doit rendre pour demain qu'on ma donner seulement hier et j'aimerais que l'on m'aide .
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
Moyenne = somme des produits ni.xi divisée par l'effectif total
Donc : (10 + 2n + 4x)/(14 + n) = 1,96 (équation 1)
Et écart-type = racine carrée de la somme des produits ni.xi² divisée par l'effectif total moins le carré de la moyenne : σ = √[somme nixi²)/somme ni - moyenne²]
Donc : (10 + 4n + 4x²)/(14 + n) - 1,96² = 0,72² (équation 2)
(1) ⇔ 10+ 2n + 4x = 1,96(14 + n)
⇔ 10 + 2n + 4x = 27,44 + 1,96n
⇔ 0,04n + 4x = 17,44
⇔ n + 100x = 436
⇔
n = 436 - 100x
(2) ⇔ 10 + 4n + 4x² = [0,72² + 1,96²](14 + n)
⇔ 4x² + 4(436 - 100x) + 10 = 4,36(14 + 436 - 100x)
⇔ 4x² - 400x + 1754 = 1962 - 436x
⇔ 4x² + 36x - 208 = 0
⇔ x² + 9x - 52 = 0
Δ = 9² - 4x1x(-52) = 81 + 208 = 289 = 17²
donc 2 solutions :
x = (-9 - 17)/2 négative donc éliminée
x = (-9 + 17)/2 = 4
On en déduit
n = 436 - 100x4 = 36
1 votes
Thanks 1
kingkylie21
Merci beaucoup !
More Questions From This User
See All
kingkylie21
January 2021 | 0 Respostas
Responda
Kingkylie21
May 2019 | 0 Respostas
Responda
Kingkylie21
May 2019 | 0 Respostas
Responda
Kingkylie21
May 2019 | 0 Respostas
Responda
×
Report "Bonjour, j'ai un dm de math que je doit rendre pour demain qu'on ma donner seulement hier et j'aimer.... Pergunta de ideia de Kingkylie21"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,Moyenne = somme des produits ni.xi divisée par l'effectif total
Donc : (10 + 2n + 4x)/(14 + n) = 1,96 (équation 1)
Et écart-type = racine carrée de la somme des produits ni.xi² divisée par l'effectif total moins le carré de la moyenne : σ = √[somme nixi²)/somme ni - moyenne²]
Donc : (10 + 4n + 4x²)/(14 + n) - 1,96² = 0,72² (équation 2)
(1) ⇔ 10+ 2n + 4x = 1,96(14 + n)
⇔ 10 + 2n + 4x = 27,44 + 1,96n
⇔ 0,04n + 4x = 17,44
⇔ n + 100x = 436
⇔ n = 436 - 100x
(2) ⇔ 10 + 4n + 4x² = [0,72² + 1,96²](14 + n)
⇔ 4x² + 4(436 - 100x) + 10 = 4,36(14 + 436 - 100x)
⇔ 4x² - 400x + 1754 = 1962 - 436x
⇔ 4x² + 36x - 208 = 0
⇔ x² + 9x - 52 = 0
Δ = 9² - 4x1x(-52) = 81 + 208 = 289 = 17²
donc 2 solutions :
x = (-9 - 17)/2 négative donc éliminée
x = (-9 + 17)/2 = 4
On en déduit n = 436 - 100x4 = 36