Articles
Register
Sign In
Search
luciecaillon
@luciecaillon
January 2021
1
76
Report
Bonjour j’aurais besoins d’aide pour l’exo 1. Merci.
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
gsantha
Bonjour
Exercice 1
g(x) = x^3 - 7x - 6
1.
g(x) = (x - 3) (x + 2) (x + 1)
= (x * x + x * 2 - 3 * x - 3 * 2) (x + 1)
= (x² + 2x - 3x - 6) (x + 1)
= (x² - x - 6) (x + 1)
= x² * x + x² * 1 - x * x - x * 1 - 6 * x - 6 * 1
= x^3 + x² - x² - x - 6x - 6
= x^3 - 7x - 6
2. g(x) = 0
<=> (x - 3) (x + 2) (x + 1) = 0
<=> x - 3 = 0 OU x + 2 = 0 OU x + 1 = 0
<=> x = 3 OU x = -2 OU x = -1
Donc S = {-2 ; -1 ; 3}
Vérification :
g(3) = (3 - 3) (3 + 2) (3 + 1)
= 0 * 5 * 4
= 0
g(-2) = (-2 - 3) (-2 + 2) (-2 + 1)
= -5 * 0 * (-2)
= 0
g(-1) = (-1 - 3) (-1 + 2) (-1 + 1)
= -4 * 1 * 0
= 0
Voilà j'espère avoir pu t'aider ^^
0 votes
Thanks 1
luciecaillon
Merci beaucoup !
gsantha
de rien :)
More Questions From This User
See All
luciecaillon
January 2021 | 0 Respostas
Responda
luciecaillon
January 2021 | 0 Respostas
Responda
luciecaillon
January 2021 | 0 Respostas
Responda
luciecaillon
January 2021 | 0 Respostas
Responda
luciecaillon
January 2021 | 0 Respostas
Responda
luciecaillon
January 2021 | 0 Respostas
Responda
luciecaillon
January 2021 | 0 Respostas
Responda
luciecaillon
January 2021 | 0 Respostas
Responda
luciecaillon
January 2021 | 0 Respostas
Responda
luciecaillon
January 2021 | 0 Respostas
Responda
×
Report "Bonjour j’aurais besoins d’aide pour l’exo 1. Merci.... Pergunta de ideia de luciecaillon"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Exercice 1
g(x) = x^3 - 7x - 6
1. g(x) = (x - 3) (x + 2) (x + 1)
= (x * x + x * 2 - 3 * x - 3 * 2) (x + 1)
= (x² + 2x - 3x - 6) (x + 1)
= (x² - x - 6) (x + 1)
= x² * x + x² * 1 - x * x - x * 1 - 6 * x - 6 * 1
= x^3 + x² - x² - x - 6x - 6
= x^3 - 7x - 6
2. g(x) = 0
<=> (x - 3) (x + 2) (x + 1) = 0
<=> x - 3 = 0 OU x + 2 = 0 OU x + 1 = 0
<=> x = 3 OU x = -2 OU x = -1
Donc S = {-2 ; -1 ; 3}
Vérification :
g(3) = (3 - 3) (3 + 2) (3 + 1)
= 0 * 5 * 4
= 0
g(-2) = (-2 - 3) (-2 + 2) (-2 + 1)
= -5 * 0 * (-2)
= 0
g(-1) = (-1 - 3) (-1 + 2) (-1 + 1)
= -4 * 1 * 0
= 0
Voilà j'espère avoir pu t'aider ^^