a. L'aire d'un carré n'est pas proportionnel à la longueur de son côté car comme on peut le voir sur le graphique ce n'est pas une droite qui la représente.
b. L'aire pour 2,5 est environ de 6 cm²
En lisant 2,5 sur l'axe des abscisses (horizontale), la courbe atteint 6 sur l'axe des ordonnées (verticale).
c. En faisant ce tableau et ce calcul, James est parti du fait que nous sommes dans une situation de proportionnalité alors que ce n'est pas le cas.
Aire carré = côté × côté = c² = 2,5² = 6,25 cm²
Exercice 61
Sur la droite bleue (F1) on voit que quand on achète 4kg on paie 7€ alors que sur la droite rouge (F2), quand on achète 5kg on paie 6.
Puisque que ce sont des situations proportionnelles, on peut faire des tableaux de proportionnalité.
F1:
4kg | 8kg
7€ |. ?
8×7/4 = 14€
F2:
5kg | 8kg
6€. | ?
8×6/5 = 9,6€
14€ - 9,6€ = 4,40€
Donc la différence de prix entre ces 2 fournisseurs pour un achat de 8kg est de 4,40€.
Lista de comentários
Bonjour,
Exercice 60:
a. L'aire d'un carré n'est pas proportionnel à la longueur de son côté car comme on peut le voir sur le graphique ce n'est pas une droite qui la représente.
b. L'aire pour 2,5 est environ de 6 cm²
En lisant 2,5 sur l'axe des abscisses (horizontale), la courbe atteint 6 sur l'axe des ordonnées (verticale).
c. En faisant ce tableau et ce calcul, James est parti du fait que nous sommes dans une situation de proportionnalité alors que ce n'est pas le cas.
Aire carré = côté × côté = c² = 2,5² = 6,25 cm²
Exercice 61
Sur la droite bleue (F1) on voit que quand on achète 4kg on paie 7€ alors que sur la droite rouge (F2), quand on achète 5kg on paie 6.
Puisque que ce sont des situations proportionnelles, on peut faire des tableaux de proportionnalité.
F1:
4kg | 8kg
7€ |. ?
8×7/4 = 14€
F2:
5kg | 8kg
6€. | ?
8×6/5 = 9,6€
14€ - 9,6€ = 4,40€
Donc la différence de prix entre ces 2 fournisseurs pour un achat de 8kg est de 4,40€.