bonjour
(AB) et (A'B') seront parallèles si :
OA'/OA = OB'/OB selon le théorème de Thalès,
donc avec les données de l'énoncé :
2x/3 = (x+1)/2
2x * 2 = 3 (x+1)
4x = 3x + 3
x = 3
Bonjour,
Exercice 24 :
Il faut utiliser la réciproque de Thalès, on va chercher x tel que les rapports suivant soient égaux :
• OA'/OA = OB'/OB = A'B'/AB
On remplace directement pas les valeurs données :
• 2x/3 = (x+1)/2 = A'B'/AB
On va se préoccuper des 2 rapports de gauche, résolvons l'équation :
• 2x/3 = (x+1)/2
On se débarrasse des fractions :
• 2x/3 × 3 × 2 = (x+1)/2 × 2 × 3
• 2x × 2 = (x+1) × 3
• 4x = 3x + 3
On peut alors résoudre facilement :
• 4x - 3x = 3
• x = 3
→ (AB) // (A'B') pour une valeur de x = 3 car les rapports seront égaux et on pourra alors appliquer la réciproque de Thalès.
Bonne fin de journée !
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
bonjour
(AB) et (A'B') seront parallèles si :
OA'/OA = OB'/OB selon le théorème de Thalès,
donc avec les données de l'énoncé :
2x/3 = (x+1)/2
2x * 2 = 3 (x+1)
4x = 3x + 3
x = 3
Bonjour,
Exercice 24 :
Il faut utiliser la réciproque de Thalès, on va chercher x tel que les rapports suivant soient égaux :
• OA'/OA = OB'/OB = A'B'/AB
On remplace directement pas les valeurs données :
• 2x/3 = (x+1)/2 = A'B'/AB
On va se préoccuper des 2 rapports de gauche, résolvons l'équation :
• 2x/3 = (x+1)/2
On se débarrasse des fractions :
• 2x/3 × 3 × 2 = (x+1)/2 × 2 × 3
• 2x × 2 = (x+1) × 3
• 4x = 3x + 3
On peut alors résoudre facilement :
• 4x - 3x = 3
• x = 3
→ (AB) // (A'B') pour une valeur de x = 3 car les rapports seront égaux et on pourra alors appliquer la réciproque de Thalès.
Bonne fin de journée !