Articles
Register
Sign In
Search
chacha314
@chacha314
January 2021
1
103
Report
Bonjour, voici un dm de maths niveau seconde avec deux exercices qui peut m'aider sil vous plaît ? Merci bien :)
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
Exercice 1
On choisit le repère (A;AK;AD)
Dans ce repère :
A(0;0) B(2;0) C(2;1) D(0;1) K(1;0) et L(0;1/2)
Equation de la droite (DK) :
y = ax + b
a = (yK - yD)/(xK - xD) = (0 - 1)/(1 - 0) = -1
b est l'ordonnée à l'origine donc b = yD = 1
donc (DK) : y = -x + 1
Equation de la droite (BL) :
a = (1/2 - 0)/(0 - 2) = -1/4
b = yL = 1/2
donc (BL) : y = -x/4 + 1/2
E est l'intersection de (DK) et de (BL) :
-x + 1 = -x/4 + 1/2
⇔ -4x + 4 = -x + 2
⇔ -3x = -2
⇔ x = 2/3
y = -x + 1 = -2/3 + 1 = 1/3
Donc E(2/3;1/3)
Vecteur AE(2/3 - 0; 1/3 - 0) ⇒ AE(2/3;1/3)
Vecteur AC(2;1)
Donc AC = 1/3 x AE ⇒ A, E et C alignés
(avec les flèches sur les vecteur !!)
Exercice 2
1)...
2) On choisit le repère (A;AB;AD)
a)
A(0;0) B(1;0) C(1;1) D(0;1)
AE = 3/4 x AD ⇒ E(0;3/4)
DF = 1/4 x DC ⇒ F(1/4;1)
b) AC(1;1) et EF(1/4;1/4)
⇒ EF = 1/4 x AC
⇒ EF et AC colinéaires
⇒ (EF) et (AC) parallèles
2) a)
EF = EA + AD + DF
⇔ EF = -3/4AD + AD + 1/4DC
⇔ EF = 1/4AD + 1/4DC
⇔ EF = 1/4(AD + DC)
⇔ EF = 1/4 x AC
b) EF et AC sont colinéaires ⇒ (EF) et (AC) sont parallèles
2 votes
Thanks 1
chacha314
Merci ! Pour l'exercice 2) la question 1 pouvez-vous m'aider je n'arrive pas sa me bloque toujours
scoladan
Tu traces le parallélogramme ABCD. Tu divises AD en 4. Tu places E au 3/4 de AD en partant de A. De même, tu divises
scoladan
... DC en 4. Et tu places F à 1/4 de DC
chacha314
Merci j'vais essayer du cou^
chacha314
coup*
More Questions From This User
See All
chacha314
June 2021 | 0 Respostas
Responda
chacha314
January 2021 | 0 Respostas
Responda
chacha314
January 2021 | 0 Respostas
Responda
chacha314
January 2021 | 0 Respostas
Responda
chacha314
January 2021 | 0 Respostas
Responda
chacha314
January 2021 | 0 Respostas
Responda
chacha314
January 2021 | 0 Respostas
Responda
chacha314
January 2021 | 0 Respostas
Responda
chacha314
January 2021 | 0 Respostas
Responda
chacha314
January 2021 | 0 Respostas
Responda
×
Report "Bonjour, voici un dm de maths niveau seconde avec deux exercices qui peut m'aider sil vous plaît ? M.... Pergunta de ideia de chacha314"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,Exercice 1
On choisit le repère (A;AK;AD)
Dans ce repère :
A(0;0) B(2;0) C(2;1) D(0;1) K(1;0) et L(0;1/2)
Equation de la droite (DK) :
y = ax + b
a = (yK - yD)/(xK - xD) = (0 - 1)/(1 - 0) = -1
b est l'ordonnée à l'origine donc b = yD = 1
donc (DK) : y = -x + 1
Equation de la droite (BL) :
a = (1/2 - 0)/(0 - 2) = -1/4
b = yL = 1/2
donc (BL) : y = -x/4 + 1/2
E est l'intersection de (DK) et de (BL) :
-x + 1 = -x/4 + 1/2
⇔ -4x + 4 = -x + 2
⇔ -3x = -2
⇔ x = 2/3
y = -x + 1 = -2/3 + 1 = 1/3
Donc E(2/3;1/3)
Vecteur AE(2/3 - 0; 1/3 - 0) ⇒ AE(2/3;1/3)
Vecteur AC(2;1)
Donc AC = 1/3 x AE ⇒ A, E et C alignés
(avec les flèches sur les vecteur !!)
Exercice 2
1)...
2) On choisit le repère (A;AB;AD)
a)
A(0;0) B(1;0) C(1;1) D(0;1)
AE = 3/4 x AD ⇒ E(0;3/4)
DF = 1/4 x DC ⇒ F(1/4;1)
b) AC(1;1) et EF(1/4;1/4)
⇒ EF = 1/4 x AC
⇒ EF et AC colinéaires
⇒ (EF) et (AC) parallèles
2) a)
EF = EA + AD + DF
⇔ EF = -3/4AD + AD + 1/4DC
⇔ EF = 1/4AD + 1/4DC
⇔ EF = 1/4(AD + DC)
⇔ EF = 1/4 x AC
b) EF et AC sont colinéaires ⇒ (EF) et (AC) sont parallèles