Articles
Register
Sign In
Search
Abipipoune06
@Abipipoune06
May 2019
1
104
Report
Bonjour , vraiment besoin d aide en maths merci d avance je suis bloquée depuis 2 semaines.
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
Exo 2
f(x) = ln(x) et g(x) = x
1) voir ci-joint
on peut donc conjecturer que (C) est toujours en-dessous de (Δ).
2) d(x) = f(x) - g(x) = ln(x) - x
d'(x) = 1/x - 1 = (1 - x)/x
x 0 1 +∞
(1 - x) - 0 +
d'(x) || + 0 -
d(x) || crois. décrois.
lim d(x) quand x → 0 = -∞
d(1) = -1
et lim d(x) quand x → +∞ = lim x(ln(x)/x - 1) = lim (-x) = -∞
On en déduit que pour tout x ∈ ]0;+∞[, d(x) < 0
et donc que ln(x) < x
0 votes
Thanks 0
More Questions From This User
See All
abipipoune06
June 2021 | 0 Respostas
Responda
abipipoune06
February 2021 | 0 Respostas
Responda
abipipoune06
February 2021 | 0 Respostas
Responda
abipipoune06
February 2021 | 0 Respostas
Responda
abipipoune06
January 2021 | 0 Respostas
Responda
abipipoune06
January 2021 | 0 Respostas
Responda
Abipipoune06
May 2019 | 0 Respostas
Bonjour , Je bloque sur mon dm de maths (Niveau terminale bac +1)
Responda
Abipipoune06
May 2019 | 0 Respostas
Bonjour besoin d aide pour la partie trois de mon dm merci d avance
Responda
Abipipoune06
May 2019 | 0 Respostas
Responda
Abipipoune06
May 2019 | 0 Respostas
Responda
×
Report "Bonjour , vraiment besoin d aide en maths merci d avance je suis bloquée depuis 2 semaines.... Pergunta de ideia de Abipipoune06"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,Exo 2
f(x) = ln(x) et g(x) = x
1) voir ci-joint
on peut donc conjecturer que (C) est toujours en-dessous de (Δ).
2) d(x) = f(x) - g(x) = ln(x) - x
d'(x) = 1/x - 1 = (1 - x)/x
x 0 1 +∞
(1 - x) - 0 +
d'(x) || + 0 -
d(x) || crois. décrois.
lim d(x) quand x → 0 = -∞
d(1) = -1
et lim d(x) quand x → +∞ = lim x(ln(x)/x - 1) = lim (-x) = -∞
On en déduit que pour tout x ∈ ]0;+∞[, d(x) < 0
et donc que ln(x) < x