Articles
Register
Sign In
Search
tigre303
@tigre303
January 2021
1
77
Report
Bonsoir j'ai besoins d'aide pour cet exercice mrc
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
1) d(x) = 3x² - x + 3 - 3x - 2 = 3x² - 4x + 1
2) 3(x - 1)(x - 1/3)
= 3[x² - x/3 - x + 1/3]
= 3(x² - 4x/3 + 1/3)
= 3x² - 4x + 1
= d(x)
x -∞ 1/3 1 +∞
x - 1/3 - 0 + +
x - 1 - - 0 +
d(x) + 0 - 0 +
4) Sur ]1/3;1[, d(x) < 0 donc (C) est en-dessous de (D).
Inversement sur ]-∞;1/3[∪]1;+∞[
0 votes
Thanks 1
tigre303
pourquoi 1 dans le tableau ? la question 3
scoladan
c'est la valeur qui annule le facteur (x - 1)
tigre303
mrc
More Questions From This User
See All
tigre303
January 2021 | 0 Respostas
4 et 5 svp c est pour demain
Responda
tigre303
January 2021 | 0 Respostas
Responda
tigre303
January 2021 | 0 Respostas
Responda
tigre303
January 2021 | 0 Respostas
Responda
tigre303
January 2021 | 0 Respostas
bjr j'ai besoin d'aide svp mrc d'avance
Responda
tigre303
January 2021 | 0 Respostas
bjr j'ai besoins d'aide c'est a rendre lundi mrc
Responda
tigre303
January 2021 | 0 Respostas
Responda
tigre303
January 2021 | 0 Respostas
Responda
tigre303
January 2021 | 0 Respostas
Responda
tigre303
January 2021 | 0 Respostas
Bjr j'ai besoin d'aide pour cette exercice mrc
Responda
×
Report "Bonsoir j'ai besoins d'aide pour cet exercice mrc.... Pergunta de ideia de tigre303"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,1) d(x) = 3x² - x + 3 - 3x - 2 = 3x² - 4x + 1
2) 3(x - 1)(x - 1/3)
= 3[x² - x/3 - x + 1/3]
= 3(x² - 4x/3 + 1/3)
= 3x² - 4x + 1
= d(x)
x -∞ 1/3 1 +∞
x - 1/3 - 0 + +
x - 1 - - 0 +
d(x) + 0 - 0 +
4) Sur ]1/3;1[, d(x) < 0 donc (C) est en-dessous de (D).
Inversement sur ]-∞;1/3[∪]1;+∞[