Articles
Register
Sign In
Search
youyou19987
@youyou19987
January 2021
1
71
Report
Bonsoir , la solution sans utiliser la règle d'hôpital et merci
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
xln(1+e^x) = ln(1+e^x)^x
quand x --> - infini,
e^x --> 0+
==> 1+e^x --> 1+
==> (1+e^x)^x --> 1^x = 1-
==> ln(1+e^x)^x --> ln(1-) = 0-
1 votes
Thanks 0
More Questions From This User
See All
youyou19987
January 2021 | 0 Respostas
Responda
youyou19987
January 2021 | 0 Respostas
Svp les causes de la violences des parents envers leurs femmes svp c'est urgent
Responda
youyou19987
January 2021 | 0 Respostas
Responda
youyou19987
January 2021 | 0 Respostas
bonsoir , svp c'est quoi la solution ? et merci
Responda
youyou19987
January 2021 | 0 Respostas
Responda
youyou19987
January 2021 | 0 Respostas
Responda
youyou19987
January 2021 | 0 Respostas
why some people like combining colors in clothes ! un argument ou + svp
Responda
youyou19987
January 2021 | 0 Respostas
Responda
youyou19987
January 2021 | 0 Respostas
Responda
youyou19987
January 2021 | 0 Respostas
Responda
×
Report "Bonsoir , la solution sans utiliser la règle d'hôpital et merci.... Pergunta de ideia de youyou19987"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,xln(1+e^x) = ln(1+e^x)^x
quand x --> - infini,
e^x --> 0+
==> 1+e^x --> 1+
==> (1+e^x)^x --> 1^x = 1-
==> ln(1+e^x)^x --> ln(1-) = 0-