Como fazer o 5° caso da fatoração? (Soma de dois cubos)
Lista de comentários
MariChagasA Soma de dois cubos é o 6º caso de fatoração de expressões algébricas, para que entenda como e quando devemos utilizá-lo observe a demonstração abaixo: Dado dois números quaisquer x e y, se somarmos os dois obteremos x + y, se montarmos uma expressão algébrica com os dois números teremos x2 - xy + y2, agora devemos multiplicar as duas expressões encontradas.
Lista de comentários
Dado dois números quaisquer x e y, se somarmos os dois obteremos x + y, se montarmos uma expressão algébrica com os dois números teremos x2 - xy + y2, agora devemos multiplicar as duas expressões encontradas.
(x + y) (x2 - xy + y2) utilize a propriedade distributiva
x3 - x2y + xy2 + x2y –xy2 + y3 unir os termos semelhantes
x3 + y3 é uma expressão algébrica de dois termos onde os dois estão elevados ao cubo e somados.
Assim, podemos concluir que x3 + y3 é uma forma geral da soma de dois cubos onde
x e y poderão assumir qualquer valor real.
A forma fatorada de x3 + y3 será (x + y) (x2 - xy + y2).
Veja alguns exemplos:
Exemplo1:
a3 + 1000 é a soma de dois cubos.
Podemos escrever essa expressão da seguinte forma:
a3 + 103, assim: x = a e y = 10
Agora basta usarmos a forma geral e fazermos as substituições.
(x + y) (x2 - xy + y2)
(a + 10) (a2 – a10 + 102)
(a + 10) (a2 – 10a + 100)
Portanto, a fatoração de a3 + 103 será (a + 10) (a2 – 10a + 100).
Exemplo 2:
27x3 + 1 é a soma de dois cubos.
Podemos escrever essa expressão da seguinte forma:
(3x)3 + 1 assim: x = 3x e y = 1
Agora basta usarmos a forma gral e fazermos as substituições.
(x + y) (x2 - xy + y2)
(3x + 1) ((3x)2 – 3x .1 + 12)
(3x – 1) (9x2 – 3x + 1)
Exemplo 3:
8x3 + y3 é a soma de dois cubos.
Podemos escrever essa expressão da seguinte forma:
(2x)3 + y3 assim: x = 2x e y = y
Agora basta usarmos a forma gral e fazermos as substituições.
(x + y) (x2 - xy + y2)
(2x + y) ((2x)2 – 2xy + y2)
(2x + y) (4x2 – 2xy + y2)
Sucesso Para Você!