[tex]\displaystyle \sf \text{Podemos usar a seguinte propriedade } : \\\\\ X- Y = X \cap \overline{Y}[/tex]
Temos :[tex]\sf (A-B)\cap (B-A) \\\\ (A\cap \overline{B})\cap (B\cap \overline{A}) \\\\ (A\cap \underbrace{\sf \overline{B} \cap B}_{\sf \phi}) \cap (A\cap \overline{B} \cap \overline{A}) \\\\ (\underbrace{\sf A\cap \phi}_{\phi}) \cap (\underbrace{\sf A\cap \overline{A}}_{\phi}\cap \overline{B}) \\\\ \phi \ \cap \underbrace{\sf \phi \cap \overline{B}} _{\phi} \\\\ \phi \ \cap \phi = \phi \ \ \text{VAZIO} \\\\ Portanto : \\\\ \Large\boxed{\sf \ (A-B)\cap (B-A) = \phi \ }\checkmark[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
[tex]\displaystyle \sf \text{Podemos usar a seguinte propriedade } : \\\\\ X- Y = X \cap \overline{Y}[/tex]
Temos :
[tex]\sf (A-B)\cap (B-A) \\\\ (A\cap \overline{B})\cap (B\cap \overline{A}) \\\\ (A\cap \underbrace{\sf \overline{B} \cap B}_{\sf \phi}) \cap (A\cap \overline{B} \cap \overline{A}) \\\\ (\underbrace{\sf A\cap \phi}_{\phi}) \cap (\underbrace{\sf A\cap \overline{A}}_{\phi}\cap \overline{B}) \\\\ \phi \ \cap \underbrace{\sf \phi \cap \overline{B}} _{\phi} \\\\ \phi \ \cap \phi = \phi \ \ \text{VAZIO} \\\\ Portanto : \\\\ \Large\boxed{\sf \ (A-B)\cap (B-A) = \phi \ }\checkmark[/tex]