Considere uma função integrável f open parentheses x close parentheses. Seja F open parentheses x close parentheses uma primitiva da f open parentheses x close parentheses. Com relação à integral definida integral subscript 0 superscript 1 f left parenthesis x right parenthesis d x, é correto afirmar que:


a.

integral subscript 0 superscript 1 f left parenthesis x right parenthesis d x equals F left parenthesis 1 right parenthesis minus F left parenthesis 0 right parenthesis


b.

integral subscript 0 superscript 1 f left parenthesis x right parenthesis d x equals F left parenthesis 1 right parenthesis minus F left parenthesis 0 right parenthesis plus c


c.

integral subscript 0 superscript 1 f left parenthesis x right parenthesis d x equals f to the power of straight prime left parenthesis 1 right parenthesis minus f to the power of straight prime left parenthesis 0 right parenthesis


d.

integral subscript 0 superscript 1 f left parenthesis x right parenthesis d x equals F left parenthesis 1 right parenthesis plus c


e.

Nenhuma das demais alternativas está correta.

RESPOSTA A
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Lista de comentários


Helpful Social

Copyright © 2024 ELIBRARY.TIPS - All rights reserved.