Seja f open parentheses x close parentheses greater or equal than 0 uma função contínua. Com respeito à integral L equals integral subscript 0 superscript 1 f left parenthesis x right parenthesis d x é correto afirmar que:


a.

L corresponde ao valor da área da região delimitada pela curvas: left curly bracket left parenthesis x comma f left parenthesis x right parenthesis right parenthesis colon x element of left square bracket 0 comma 1 right square bracket right curly bracket, space left curly bracket left parenthesis x comma 0 right parenthesis colon x element of straight real numbers right curly bracket comma left curly bracket left parenthesis 0 comma y right parenthesis colon y element of straight real numbers right curly bracket text e end text left curly bracket left parenthesis 1 comma y right parenthesis colon y element of straight real numbers right curly bracket


b.

L spacecorresponde ao valor do comprimento da curva left curly bracket left parenthesis x comma f left parenthesis x right parenthesis right parenthesis colon x element of left square bracket 0 comma 1 right square bracket right curly bracket


c.

L spacecorresponde ao valor da área da região delimitada pela curvas: left curly bracket left parenthesis x comma f left parenthesis x right parenthesis right parenthesis colon x element of left square bracket 0 comma 1 right square bracket right curly bracket, space left curly bracket left parenthesis x comma negative f left parenthesis x right parenthesis right parenthesis colon x element of left square bracket 0 comma 1 right square bracket right curly bracket comma left curly bracket left parenthesis 0 comma y right parenthesis colon y element of straight real numbers right curly bracket text e end text left curly bracket left parenthesis 1 comma y right parenthesis colon y element of straight real numbers right curly bracket.


d.

Nenhuma das demais alternativas está correta.


e.

L corresponde ao valor da diferença dos limites lim for x not stretchy rightwards arrow 1 of f left parenthesis x right parenthesis minus lim for x not stretchy rightwards arrow 0 of f left parenthesis x right parenthesis.


RESPOSTA A
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Lista de comentários


Helpful Social

Copyright © 2024 ELIBRARY.TIPS - All rights reserved.