O cálculo de equações é fundamental em todos os aspectos da Matemática, como, por exemplo, para que as identidades trigonométricas sejam realizadas, é necessário o uso de equações para uma relação equilibrada entre o primeiro e o segundo membro. Por meio da definição, podemos demonstrar as identidades trigonométricas tornando-as verdadeiras. Para provar que uma identidade trigonométrica é verdadeira, procuramos trabalhar com um membro até chegarmos a igualdade do outro membro. Diante deste contexto prove a existência da identidade trigonométrica (1 – sen² x) . (1 + cotg² x) = cotg² x, logo em seguida marque a alternativa correta: ( ) c) (sen² x +1) = cotg²(x) ( ) a) cos²(x) / sen2(x) = cotg²(x) ( ) b) sen²(x) / cos²(x) = cotg²(x) ( ) d) (1 – sen² x) = cotg²(x) ( ) e) (1 + cotg² x) = cotg²(x)