J'aimerais de l'aide pour un devoir de maths. Voici les questions :
f(x)= 2 + 3/2x-1
1. Montrer que f est une fonction homographique. J'ai écris : On appelle fonction homographique toute fonction f définie sur R de la forme f(x)=ax+b/cx+b où a,b,c n’est pas égale a 0 et d sont des réels donnés. 2. Donner l'ensemble des définition de f. 3. Comment peut-on le vérifier à la calculatrice ?
Merci d'avance de votre réponse
Lista de comentários
raymrich
Bonjour, Une fonction homographique est de la forme f(x) = (ax+b) / (cx+d) avec ad-bc≠ 0 et x ≠ -d/c Application f(x) = 2 + 3/(2x-1) est définie sur R - {1/2} Alors f(x) = [2(2x-1)+3] / (2x-1) = (4x+1) / (2x-1), avec 4(-1) - (1)(2) = -4-2 = -6 ≠ 0 f est donc une fonction homographique
0 votes Thanks 0
Mariedu94
Merci pour cette réponse, aurais tu une idée pour les autres question ?
Mariedu94
J'ai taper la fonction en graphique dans ma calculatrice mais je ne sais pas comment on peut voir l'ensemble des définitions avec une fonction homographique
Lista de comentários
Une fonction homographique est de la forme f(x) = (ax+b) / (cx+d) avec ad-bc≠ 0 et x ≠ -d/c
Application
f(x) = 2 + 3/(2x-1) est définie sur R - {1/2}
Alors f(x) = [2(2x-1)+3] / (2x-1) = (4x+1) / (2x-1), avec 4(-1) - (1)(2) = -4-2 = -6 ≠ 0
f est donc une fonction homographique