Démontrer la croissance de la fonction racine carrée. Bonjouuuur ! Auriez vous une manière simple de démontre que la fonction racine carrée est croissante ?
Lista de comentários
editions
Prenons a<b et prouvons que rac( a)<rac(b). rac(b)-rac(a)= (rac(b)-rac(a))(rac(b)+rac(a))/ rac(b) +rac(a) Le dénominateur est positif car une racine est toujours positive donc on ne cherche que le signe du numérateur. (rac(b)-rac(a))(rac(b)+rac(a))=b-a Or b-a est positif puisque b>a, donc rac(b)>rac(a) quand b>a. Donc la fonction racine carrée est croissante.
Lista de comentários
rac(b)-rac(a)= (rac(b)-rac(a))(rac(b)+rac(a))/ rac(b) +rac(a)
Le dénominateur est positif car une racine est toujours positive donc on ne cherche que le signe du numérateur.
(rac(b)-rac(a))(rac(b)+rac(a))=b-a
Or b-a est positif puisque b>a, donc rac(b)>rac(a) quand b>a.
Donc la fonction racine carrée est croissante.