Em um ponto (x,y,z) do espaço, a interpretação física do rotacional do campo vetorial F esta relacionada a tendencia do campo F de produzir rotação naquele ponto. Sabendo disso, considere o campo F (x,y,z)=(2x³+4Z²) i + (X² - Y)J + (Z)K, e assinale a alternativa que contenha o seu rotacional
Lista de comentários
Resposta: [tex]\mathrm{rot}(\mathbf{F})=(0,\,8z,\,2x).[/tex]
Explicação passo a passo:
Calcular o rotacional do campo vetorial no [tex]\mathbb{R}^3[/tex]
[tex]\mathbf{F}(x,\,y,\,z)=P(x,\,y,\,z)\mathbf{i}+Q(x,\,y,\,z)\mathbf{j}+R(x,\,y,\,z)\mathbf{k}[/tex]
com
[tex]\begin{cases}~P(x,\,y,\,z)=2x^3+4z^2\\ ~Q(x,\,y,\,z)=x^2-y\\ ~R(x,\,y,\,z)=z \end{cases}[/tex]
O rotacional de [tex]\mathbf{F}[/tex] é dado por
[tex]\mathrm{rot}(\mathbf{F})=\nabla\times \mathbf{F}\\\\\\=\left(\dfrac{\partial}{\partial x},\,\dfrac{\partial}{\partial y},\,\dfrac{\partial}{\partial z}\right)\times \Big(P(x,\,y,\,z),\,Q(x,\,y,\,z),\,R(x,\,y,\,z)\Big)[/tex]
Podemos escrever o cálculo acima na forma de um determinante simbólico:
[tex]=\begin{vmatrix}\mathbf{i}&\mathbf{j}&\mathbf{k}\\\\ \frac{\partial}{\partial x}& \frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\\\ P&Q&R \end{vmatrix}[/tex]
[tex]=\begin{vmatrix}\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\\\ Q&R \end{vmatrix}\mathbf{i}-\begin{vmatrix}\frac{\partial}{\partial x}&\frac{\partial}{\partial z}\\\\ P&R \end{vmatrix}\mathbf{j}+\begin{vmatrix}\frac{\partial}{\partial x}&\frac{\partial}{\partial y}\\\\ P&Q \end{vmatrix}\mathbf{k}[/tex]
[tex]=\left(\dfrac{\partial R}{\partial y}-\dfrac{\partial Q}{\partial z}\right)\!\mathbf{i}-\left(\dfrac{\partial R}{\partial x}-\dfrac{\partial P}{\partial z}\right)\!\mathbf{j}+\left(\dfrac{\partial Q}{\partial x}-\dfrac{\partial P}{\partial y}\right)\!\mathbf{k}[/tex]
Substituindo as coordenadas [tex]P,\,Q[/tex] e [tex]R[/tex] do campo vetorial e calculando as derivadas parciais indicadas, temos
[tex]=\left(\dfrac{\partial}{\partial y}(z)-\dfrac{\partial}{\partial z}(x^2-y)\right)\!\mathbf{i}-\left(\dfrac{\partial}{\partial x}(z)-\dfrac{\partial}{\partial z}(2x^3+4z^2)\right)\!\mathbf{j}+\left(\dfrac{\partial}{\partial x}(x^2-y)-\dfrac{\partial}{\partial y}(2x^3+4z^2)\right)\!\mathbf{k}[/tex]
[tex]=(0-0)\mathbf{i}-(0-8z)\mathbf{j}+(2x-0)\mathbf{k}\\\\\\=(0)\mathbf{i}+(8z)\mathbf{j}+(2x)\mathbf{k}\\\\\\=(0,\,8z,\,2x)\quad\longleftarrow\quad\mathsf{resposta.}[/tex]
Dúvidas? Comente.
Bons estudos!