Articles
Register
Sign In
Search
yasmineabou
@yasmineabou
June 2021
1
170
Report
Exercice 6 : petit d
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
anno32
Bonsoir
a) x² - 6x + 9
identifiant a, b et c
a = 1, b = -6 et c = 9
calculons Δ
Δ = b² - 4ac
Δ = (-6)² - 4(1)(9) = 36 - 36 = 0
x² - 6x + 9
la forme canonique est
(x-3)²
b) 2x² + x + 1
a = 2 b = 1 et c = 1
Calculons Δ
Δ = (1)² - 4(2)(1) = 1 - 8 = -7
Forme canonique
2[(x+1/4)² + 7/16]
c) -3x² + x
a = -3, b = 1 et c = 0
Δ = (1)² - 4(-3)(0) = 1
Forme canonique
-3[(x-1/6)² - 1/36]
d) 2x² - 4x√2 - 7
a = 2, b = 4√2 et c = -7
Δ = (-4√2)² - 4(2)(-7)
Δ = 32 + 56
Δ = 88
Forme canonique
2[(x-√2)² - 88/16]
0 votes
Thanks 0
More Questions From This User
See All
yasmineabou
June 2021 | 0 Respostas
Responda
yasmineabou
June 2021 | 0 Respostas
Responda
yasmineabou
June 2021 | 0 Respostas
Responda
yasmineabou
June 2021 | 0 Respostas
Responda
yasmineabou
June 2021 | 0 Respostas
Responda
yasmineabou
June 2021 | 0 Respostas
Responda
yasmineabou
June 2021 | 0 Respostas
Responda
yasmineabou
June 2021 | 0 Respostas
Responda
yasmineabou
June 2021 | 0 Respostas
Responda
yasmineabou
June 2021 | 0 Respostas
Bonjour , j'ai vraiment besoin d'aide c'est niveau 1ere S mais je comprends rien au deux premiers exercice si quelqu'un pourrait m'aider Merciiii bcp
Responda
×
Report "Exercice 6 : petit d.... Pergunta de ideia de yasmineabou"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
a) x² - 6x + 9
identifiant a, b et c
a = 1, b = -6 et c = 9
calculons Δ
Δ = b² - 4ac
Δ = (-6)² - 4(1)(9) = 36 - 36 = 0
x² - 6x + 9
la forme canonique est
(x-3)²
b) 2x² + x + 1
a = 2 b = 1 et c = 1
Calculons Δ
Δ = (1)² - 4(2)(1) = 1 - 8 = -7
Forme canonique
2[(x+1/4)² + 7/16]
c) -3x² + x
a = -3, b = 1 et c = 0
Δ = (1)² - 4(-3)(0) = 1
Forme canonique
-3[(x-1/6)² - 1/36]
d) 2x² - 4x√2 - 7
a = 2, b = 4√2 et c = -7
Δ = (-4√2)² - 4(2)(-7)
Δ = 32 + 56
Δ = 88
Forme canonique
2[(x-√2)² - 88/16]