Bonsoir,
h(g(x))' = g(x)' × h'(g(x))
avec h(x) = x^2
g(x) = x + 1/x
h'(x) = 2x
Ainsi :
f'(x) = (2 - 2/x^2)(x + 1/x)
= 2x(-2/x^3)
= 2xx^3/x^3 - 2/x^3
= (2x^4 - 2)/x^3
= 2 (x^4 - 1)/x^3
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Bonsoir,
h(g(x))' = g(x)' × h'(g(x))
avec h(x) = x^2
g(x) = x + 1/x
h'(x) = 2x
Ainsi :
f'(x) = (2 - 2/x^2)(x + 1/x)
= 2x(-2/x^3)
= 2xx^3/x^3 - 2/x^3
= (2x^4 - 2)/x^3
= 2 (x^4 - 1)/x^3