DE = BC
cos30° = (BC)/50
√(3)/2 = (BC)/50
2(BC) = 50√3
BC = 50/2√3
sen30° = (AE)/50
1/2 = (AE)/50
2(AE) = 50(1)
2(AE) = 50
AE = 50/2
BC = 25√3
EB = DC = 50
AE = 25
AB = AE + EB = 25 + 50 = 75
AC = √[(AB)² + (BC)²]
AC = √[75² + (25√3)²]
AC = √[5625 + 25²(√3)²]
AC = √[5625 + 625(3)]
AC = √[5625 + 1875]
AC = √7500
AC = √(2500(3))
AC = √2500√3
AC = √50²√3
P = AB + BC + AC
P = 75 + 25√3 + 50√3
P = 75 + 75√3
P ≈ 75 + 75(5/3)
P ≈ 75 + 25(5)
P ≈ 75 + 125
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Resposta:
d) 200m
Explicação passo a passo:
Triângulo ADE:
DE = BC
cos30° = (BC)/50
√(3)/2 = (BC)/50
2(BC) = 50√3
BC = 50/2√3
BC = 25√3
sen30° = (AE)/50
1/2 = (AE)/50
2(AE) = 50(1)
2(AE) = 50
AE = 50/2
AE = 25
-------------------
Triângulo ABC:
BC = 25√3
EB = DC = 50
AE = 25
AB = AE + EB = 25 + 50 = 75
AC = √[(AB)² + (BC)²]
AC = √[75² + (25√3)²]
AC = √[5625 + 25²(√3)²]
AC = √[5625 + 625(3)]
AC = √[5625 + 1875]
AC = √7500
AC = √(2500(3))
AC = √2500√3
AC = √50²√3
AC = 50√3
P = AB + BC + AC
P = 75 + 25√3 + 50√3
P = 75 + 75√3
P ≈ 75 + 75(5/3)
P ≈ 75 + 25(5)
P ≈ 75 + 125
P ≈ 200m