Para encontrar o quarto termo de uma progressão geométrica (PG) de quatro termos, conhecendo a razão (r) e o primeiro termo (a₁), podemos utilizar a fórmula geral para o n-ésimo termo de uma PG: aₙ = a₁ * r^(n-1)
Nesse caso, temos a₁ = 7 e r = 5. Queremos encontrar o quarto termo (a₄), então substituindo esses valores na fórmula, temos: a₄ = 7 * 5^(4-1)
Simplificando os expoentes, temos: a₄ = 7 * 5^3
Agora, podemos calcular o valor de 5^3: a₄ = 7 * 125
Lista de comentários
Para encontrar o quarto termo de uma progressão geométrica (PG) de quatro termos, conhecendo a razão (r) e o primeiro termo (a₁), podemos utilizar a fórmula geral para o n-ésimo termo de uma PG: aₙ = a₁ * r^(n-1)
Nesse caso, temos a₁ = 7 e r = 5. Queremos encontrar o quarto termo (a₄), então substituindo esses valores na fórmula, temos: a₄ = 7 * 5^(4-1)
Simplificando os expoentes, temos: a₄ = 7 * 5^3
Agora, podemos calcular o valor de 5^3: a₄ = 7 * 125
Finalmente, realizando a multiplicação: a₄ = 875
Portanto, o quarto termo dessa PG é igual a 875.