Por que o rendimento energético das células eucariotas é menor do que das células procariotas?
Lista de comentários
little3
seres vivos utilizam a molécula de adenosina trifosfato (ATP) como fonte de energia para diferentes ações, desde o ato de virar uma página até os batimentos cardíacos. Basicamente, o ATP é constituído por um nucleotídeo composto pela base nitrogenada (adenina) ligada a um açúcar (ribose) e três fosfatos, cuja energia é armazenada nas ligações químicas entre os fosfatos. O rompimento dessa ligação libera fosfato que é utilizado nos processos celulares.
Quando a molécula de ATP perde um fosfato, essa se torna uma molécula com dois fosfatos, denominada adenosina difosfato (ADP), entretanto, quando o ATP é degradado a sua forma mais simples, liberando dois fosfatos e, consequentemente, mais energia, torna-se uma molécula com apenas um fosfato, denominada adenosina monofosfato (AMP). O ATP é utilizado e gerado durante os processos de respiração celular, tanto na presença de oxigênio (respiração aeróbia) quanto na ausência de oxigênio (respiração anaeróbia e fermentação)
RESPIRAÇÃO
A respiração divide-se em duas fases: a anaeróbia, que compreende a etapa da glicólise, que ocorre na ausência do oxigênio no citoplasma das células eucariótica e procariótica, e aeróbia que ocorre na presença do oxigênio. A fase aeróbia divide-se em duas etapas: o ciclo de Krebs que ocorre na matriz mitocondrial das células eucarióticas e no citoplasma das células procarióticas, e a cadeia respiratória que ocorre nas cristas mitocondriais e próximas à face interna da membrana plasmática, em eucariotos e procariotos, respectivamente.
Glicólise: nessa etapa, a glicose (C_6_6H_{12}_{12}O_6_6) é oxidada, em um processo denominado glicólise, usando dois ATPs por moléculas de glicose para fornecer a energia inicial. Ao final da glicólise, produzem duas moléculas de piruvato, 4 ATPs, sendo que 2 ATPs irão repor os utilizados inicialmente, havendo, portanto um saldo final de 2 ATPs e a liberação de elétrons energizados e íons H^+^+, são capturados por aceptores de elétrons denominados NAD^+^+ (do inglês Nicotinamide Adenine Dinucleotide), formando, no final da glicólise, dois equivalentes reduzidos em NADH^+^+.
Ciclo de Krebs: o piruvato, com três carbonos, produzido na glicólise, passa para o interior das mitocôndrias, onde é oxidado até o grupo acetil, com dois carbonos, pela ação da piruvato desidrogenase, liberando uma molécula de gás carbônico (CO_2_2) e energia, sendo parte dela captada quando NADH^+^+ é reduzido, formando NADH_2_2 e, a outra parte da energia é captada quando o grupo acetil é combinado com a coenzima A, formando a acetilcoenzima A (Acetil CoA). O Acetil CoA combina-se com um composto de quatro carbonos, o ácido oxalacético, e libera a coenzima A, formando o ácido cítrico. Ao longo do ciclo, o ácido cítrico perde dois carbonos na forma de CO_2_2 e oito hidrogênios que são captados por NAD e por um outro aceptor de elétrons chamado FAD (do inglês, Flavin Adenine Dinucleotide). Ao final, forma-se o ácido oxalacético, que novamente se unirá ao acetil CoA, reiniciando o ciclo. Durante esse processo, formam-se também duas moléculas de GTP (do inglês Guanosine Triphosphate), muito semelhante ao ATP.
Cadeia respiratória ou fosforilação oxidativa: nessas regiões há enzimas oxidativas organizadas em sequência, denominadas citocromos, que atuam como transportadores de elétrons. A essa série de enzimas dá-se o nome de cadeia respiratória. As moléculas de NADH e FADH formadas na glicólise e no ciclo de Krebs são oxidadas na cadeia respiratória, transferindo os elétrons para os citocromos. À medida que os elétrons de hidrogênio provenientes dessas moléculas passam pelos transportadores, esses são oxidados e perdem energia que é armazenada em moléculas de ATP, através da fosforilação do ADP. Por esse fato, a cadeia respiratória também é conhecida como fosforilação oxidativa. O receptor final do hidrogênio é o oxigênio, formando a água. É de extrema importância o fornecimento constante de oxigênio, caso contrário os transportadores ficariam sempre com seus hidrogênios reduzidos, sem condições de receber novos hidrogênios, interrompendo a respiração. A cadeia respiratória é responsável pela maior parte de ATP produzido pela célula.
Lista de comentários
Quando a molécula de ATP perde um fosfato, essa se torna uma molécula com dois fosfatos, denominada adenosina difosfato (ADP), entretanto, quando o ATP é degradado a sua forma mais simples, liberando dois fosfatos e, consequentemente, mais energia, torna-se uma molécula com apenas um fosfato, denominada adenosina monofosfato (AMP). O ATP é utilizado e gerado durante os processos de respiração celular, tanto na presença de oxigênio (respiração aeróbia) quanto na ausência de oxigênio (respiração anaeróbia e fermentação)
RESPIRAÇÃO
A respiração divide-se em duas fases: a anaeróbia, que compreende a etapa da glicólise, que ocorre na ausência do oxigênio no citoplasma das células eucariótica e procariótica, e aeróbia que ocorre na presença do oxigênio. A fase aeróbia divide-se em duas etapas: o ciclo de Krebs que ocorre na matriz mitocondrial das células eucarióticas e no citoplasma das células procarióticas, e a cadeia respiratória que ocorre nas cristas mitocondriais e próximas à face interna da membrana plasmática, em eucariotos e procariotos, respectivamente.
Glicólise: nessa etapa, a glicose (C_6_6H_{12}_{12}O_6_6) é oxidada, em um processo denominado glicólise, usando dois ATPs por moléculas de glicose para fornecer a energia inicial. Ao final da glicólise, produzem duas moléculas de piruvato, 4 ATPs, sendo que 2 ATPs irão repor os utilizados inicialmente, havendo, portanto um saldo final de 2 ATPs e a liberação de elétrons energizados e íons H^+^+, são capturados por aceptores de elétrons denominados NAD^+^+ (do inglês Nicotinamide Adenine Dinucleotide), formando, no final da glicólise, dois equivalentes reduzidos em NADH^+^+.
Ciclo de Krebs: o piruvato, com três carbonos, produzido na glicólise, passa para o interior das mitocôndrias, onde é oxidado até o grupo acetil, com dois carbonos, pela ação da piruvato desidrogenase, liberando uma molécula de gás carbônico (CO_2_2) e energia, sendo parte dela captada quando NADH^+^+ é reduzido, formando NADH_2_2 e, a outra parte da energia é captada quando o grupo acetil é combinado com a coenzima A, formando a acetilcoenzima A (Acetil CoA). O Acetil CoA combina-se com um composto de quatro carbonos, o ácido oxalacético, e libera a coenzima A, formando o ácido cítrico. Ao longo do ciclo, o ácido cítrico perde dois carbonos na forma de CO_2_2 e oito hidrogênios que são captados por NAD e por um outro aceptor de elétrons chamado FAD (do inglês, Flavin Adenine Dinucleotide). Ao final, forma-se o ácido oxalacético, que novamente se unirá ao acetil CoA, reiniciando o ciclo. Durante esse processo, formam-se também duas moléculas de GTP (do inglês Guanosine Triphosphate), muito semelhante ao ATP.
Cadeia respiratória ou fosforilação oxidativa: nessas regiões há enzimas oxidativas organizadas em sequência, denominadas citocromos, que atuam como transportadores de elétrons. A essa série de enzimas dá-se o nome de cadeia respiratória. As moléculas de NADH e FADH formadas na glicólise e no ciclo de Krebs são oxidadas na cadeia respiratória, transferindo os elétrons para os citocromos. À medida que os elétrons de hidrogênio provenientes dessas moléculas passam pelos transportadores, esses são oxidados e perdem energia que é armazenada em moléculas de ATP, através da fosforilação do ADP. Por esse fato, a cadeia respiratória também é conhecida como fosforilação oxidativa. O receptor final do hidrogênio é o oxigênio, formando a água. É de extrema importância o fornecimento constante de oxigênio, caso contrário os transportadores ficariam sempre com seus hidrogênios reduzidos, sem condições de receber novos hidrogênios, interrompendo a respiração. A cadeia respiratória é responsável pela maior parte de ATP produzido pela célula.