Articles
Register
Sign In
Search
orton
@orton
June 2021
1
75
Report
Pouvez vous m'aider s'il vous plait
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
CdFMaster
1) a. A = x²
b. Pour x = 2 + √2 :
A = (2+√2)²
A = 2² + 4√2 + (√2)² (identité remarquable)
A = 4 + 4√2 + 2
A = 6 + 4√2
2) a. Aire d'un triangle = (base × hauteur) /2
A' = (4 × (x - 0,5)) / 2
b. A + A' = (6 + 4√2) + ((4 × ((2+√2) - 0,5)) / 2)
A + A' = 6 + 4√2 + (4 × (2+√2 - 0,5) / 2) (suppression des parenthèses inutiles)
A + A' = 6 + 4√2 + (2 × (1,5+√2)) (le "4×" et le "/2" donnent "2×" et 2-0,5 = 1,5)
A + A' = 6 + 4√2 + 3 + 2√2
A + A' = 9 + 6√2
0 votes
Thanks 1
orton
merci beaucoup
More Questions From This User
See All
orton
June 2021 | 0 Respostas
Peut-ont m'aider a faire le petit 4 SVP
Responda
orton
June 2021 | 0 Respostas
Pouvez vous m'aider s'il vous plait
Responda
orton
June 2021 | 0 Respostas
Responda
orton
June 2021 | 0 Respostas
Responda
orton
June 2021 | 0 Respostas
Responda
orton
June 2021 | 0 Respostas
Responda
orton
June 2021 | 0 Respostas
Responda
Orton
October 2020 | 0 Respostas
Responda
Orton
October 2020 | 0 Respostas
Responda
Orton
October 2020 | 0 Respostas
Responda
×
Report "Pouvez vous m'aider s'il vous plait.... Pergunta de ideia de orton"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
b. Pour x = 2 + √2 :
A = (2+√2)²
A = 2² + 4√2 + (√2)² (identité remarquable)
A = 4 + 4√2 + 2
A = 6 + 4√2
2) a. Aire d'un triangle = (base × hauteur) /2
A' = (4 × (x - 0,5)) / 2
b. A + A' = (6 + 4√2) + ((4 × ((2+√2) - 0,5)) / 2)
A + A' = 6 + 4√2 + (4 × (2+√2 - 0,5) / 2) (suppression des parenthèses inutiles)
A + A' = 6 + 4√2 + (2 × (1,5+√2)) (le "4×" et le "/2" donnent "2×" et 2-0,5 = 1,5)
A + A' = 6 + 4√2 + 3 + 2√2
A + A' = 9 + 6√2