Articles
Register
Sign In
Search
Sweetness
@Sweetness
May 2019
1
118
Report
Quelqu'un pourrait m'aider à résoudre ces 2 équations svp :
A) (x + 1)² = 1
B) (Racine carrée de 3x + racine carrée de 2)² = 3x²
MERCI
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
loulakar
Verified answer
Bonjour,
A) (x + 1)² - 1 = 0
c'est du type : a² - b² = (a - b)(a + b)
(x + 1 - 1)(x + 1 + 1) = 0
x(x + 2) = 0
Pour qu'un produit soit nul, il faut qu'au moins un de ces termes soit nul :
x = 0 ou x + 2 = 0
x = 0 ou x = -2
S = {-2;0}
B) (x√3 + √2)² - 3x² = 0
(x√3 + √2)² - (x√3)² = 0
(x√3 + √2 - x√3)(x√3 + √2 + x√3) = 0
√2(2x√3 + √2) = 0
2x√3 + √2 = 0
2x√3 = -√2
2x = -√2 / √3
x = -√2 / (2 * √3)
x = -1/√6
1 votes
Thanks 1
More Questions From This User
See All
Sweetness
January 2021 | 0 Respostas
Responda
Sweetness
January 2021 | 0 Respostas
Responda
Sweetness
January 2021 | 0 Respostas
Responda
Sweetness
January 2021 | 0 Respostas
Responda
Sweetness
January 2021 | 0 Respostas
Responda
Sweetness
January 2021 | 0 Respostas
Responda
Sweetness
January 2021 | 0 Respostas
Responda
Sweetness
January 2021 | 0 Respostas
Responda
Sweetness
January 2021 | 0 Respostas
Responda
Sweetness
January 2021 | 0 Respostas
Responda
×
Report "Quelqu'un pourrait m'aider à résoudre ces 2 équations svp : A) (x + 1)² = 1 B) (Racine carrée de 3x .... Pergunta de ideia de Sweetness"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,A) (x + 1)² - 1 = 0
c'est du type : a² - b² = (a - b)(a + b)
(x + 1 - 1)(x + 1 + 1) = 0
x(x + 2) = 0
Pour qu'un produit soit nul, il faut qu'au moins un de ces termes soit nul :
x = 0 ou x + 2 = 0
x = 0 ou x = -2
S = {-2;0}
B) (x√3 + √2)² - 3x² = 0
(x√3 + √2)² - (x√3)² = 0
(x√3 + √2 - x√3)(x√3 + √2 + x√3) = 0
√2(2x√3 + √2) = 0
2x√3 + √2 = 0
2x√3 = -√2
2x = -√2 / √3
x = -√2 / (2 * √3)
x = -1/√6