Articles
Register
Sign In
Search
Liiisaaa
@Liiisaaa
January 2021
1
84
Report
salut je bloque pour la question 2) b et c
merci d'avance
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
2) b) Le profit est maximal quand Cm(x) = 28 sur l'intervalle où Cm est croissante.
Cm est croissante sur [6;12]
Voir courbes ci-joint
On lit graphiquement Cm(9) = 28 donc x = 9 litres de shampooing.
c) 2x² - 24 x + 82 = 28
⇔ 2x² - 24x + 54 = 0
⇔ x² - 12x + 27 = 0
Δ = (-12)² - 4x1x27 = 144 - 108 = 36 = 6²
Donc 2 solutions :
x = (12 - 6)/2 = 3 ∉ [6;12], intervalle sur lequel Cm est croissante
x = (12 + 6)/2 = 9
2 votes
Thanks 1
Liiisaaa
super merci beaucoup
More Questions From This User
See All
Liiisaaa
February 2021 | 0 Respostas
Pourquoi faut il investir dans le capital humain?
Responda
Liiisaaa
January 2021 | 0 Respostas
Responda
Liiisaaa
January 2021 | 0 Respostas
Responda
Liiisaaa
January 2021 | 0 Respostas
Responda
Liiisaaa
January 2021 | 0 Respostas
Responda
Liiisaaa
January 2021 | 0 Respostas
Responda
Liiisaaa
January 2021 | 0 Respostas
Responda
Liiisaaa
January 2021 | 0 Respostas
Responda
Liiisaaa
January 2021 | 0 Respostas
Responda
Liiisaaa
January 2021 | 0 Respostas
Bonjour, je comprends pas comment on trouve an+1= 0,6an+550 merci pour votre aide
Responda
×
Report "salut je bloque pour la question 2) b et c merci d'avance.... Pergunta de ideia de Liiisaaa"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,2) b) Le profit est maximal quand Cm(x) = 28 sur l'intervalle où Cm est croissante.
Cm est croissante sur [6;12]
Voir courbes ci-joint
On lit graphiquement Cm(9) = 28 donc x = 9 litres de shampooing.
c) 2x² - 24 x + 82 = 28
⇔ 2x² - 24x + 54 = 0
⇔ x² - 12x + 27 = 0
Δ = (-12)² - 4x1x27 = 144 - 108 = 36 = 6²
Donc 2 solutions :
x = (12 - 6)/2 = 3 ∉ [6;12], intervalle sur lequel Cm est croissante
x = (12 + 6)/2 = 9