Articles
Register
Sign In
Search
Halimatraore30
@Halimatraore30
April 2019
1
98
Report
Salut s'il vous plait au secoue E= (x-3)²+(x-3)(1-2x)ou x désigne un nombre. a.développer et réduire E b.prouver que l'expression factorisée de E EST (5X-3) (-x-2) c.résoudre l’équation E=0
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
Commentaires
Bonjour
Halimatraore30
E = (x - 3)² + (x - 3)(1 - 2x)
a) Développer et réduire.
E = (x - 3)² + (x - 3)(1 - 2x)
E = (x² - 6x + 9) + (x - 2x² - 3 + 6x)
E = x² - 6x + 9 + x - 2x² - 3 + 6x
E = -x² + x + 6
b) Factorisation.
E = (x - 3)² + (x - 3)(1 - 2x)
E = (x - 3)(x - 3) + (x - 3)(1 - 2x)
E = (x - 3)[(x - 3) + (1 - 2x)]
E = (x - 3)(x - 3 + 1 - 2x)
E = (x - 3)(-x - 2)
c) Résoudre l'équation E = 0
E = 0
(x - 3)(-x - 2) = 0
x - 3 = 0 ou -x - 2 = 0
x = 3 ou -x = 2
x = 3 ou x = -2
3 votes
Thanks 1
More Questions From This User
See All
halimatraore30
February 2021 | 0 Respostas
Responda
halimatraore30
January 2021 | 0 Respostas
Responda
halimatraore30
January 2021 | 0 Respostas
Responda
halimatraore30
January 2021 | 0 Respostas
Responda
halimatraore30
January 2021 | 0 Respostas
Responda
halimatraore30
January 2021 | 0 Respostas
Responda
halimatraore30
January 2021 | 0 Respostas
Responda
halimatraore30
January 2021 | 0 Respostas
Responda
Halimatraore30
June 2019 | 0 Respostas
Responda
Halimatraore30
June 2019 | 0 Respostas
Responda
×
Report "Salut s'il vous plait au secoue E= (x-3)²+(x-3)(1-2x)ou x désigne un nombre. a.développer et réduire.... Pergunta de ideia de Halimatraore30"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
E = (x - 3)² + (x - 3)(1 - 2x)
a) Développer et réduire.
E = (x - 3)² + (x - 3)(1 - 2x)
E = (x² - 6x + 9) + (x - 2x² - 3 + 6x)
E = x² - 6x + 9 + x - 2x² - 3 + 6x
E = -x² + x + 6
b) Factorisation.
E = (x - 3)² + (x - 3)(1 - 2x)
E = (x - 3)(x - 3) + (x - 3)(1 - 2x)
E = (x - 3)[(x - 3) + (1 - 2x)]
E = (x - 3)(x - 3 + 1 - 2x)
E = (x - 3)(-x - 2)
c) Résoudre l'équation E = 0
E = 0
(x - 3)(-x - 2) = 0
x - 3 = 0 ou -x - 2 = 0
x = 3 ou -x = 2
x = 3 ou x = -2