Articles
Register
Sign In
Search
anais29400
@anais29400
January 2021
1
88
Report
SVP c'est super urgent
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
loulakar
Verified answer
1) coût moyen de production :
Pour x = 1000, 2000 Et 4000 objets
CM(1000)=C(1000)/1000
CM(1000) = [(1000)^3-6(1000)^2+13*1000] / 1000
=1000^2 - 6*1000 + 13
= 994013 milliers d'euros
CM(2000) =
[(2000)^3-6(2000)^2+13*2000]/2000
= 2000^2 - 12000 + 13
= 3988013 milliers d'euros
CM(4000) =
[(4000)^3-6(4000)^2+13*4000]/4000
= 4000^2 - 24000 + 13
= 15976013 milliers d'euros
2) justifier :
CM(x) = (x^3-6x^2+13x)/x
CM(x) = x(x^2-6x+13)/x
CM(x) = x^2 - 6x + 13
b) CM(x) = m
x^2 - 6x + 13 - m = 0
Delta^2 = (-6)^2-4*1*(13-m)
Delta^2 = 36 - 52 + 4m
Delta^2 = -16 + 4 m
Pour avoir le plus petit il faut que le delta^2 soit égal à 0 donc :
-16 + 4m = 0
4m = 16
m = 16 / 4
m = 4
Le minimum de CM = 4
x^2 - 6x + 13 = 4
x^2 - 6x + 13 - 4 = 0
x^2 - 6x + 9 = 0
Delta^2 = (-6)^2-4*1*9
Delta^2 = 36 - 36
Delta^2 = 0
Donc une solution
X1 = 6/2
X1 = 3 milliers d'objets
3) chaque objet = 5€
CM(x) = 5
x^2 - 6x + 13 = 5
x^2 - 6x + 13 - 5 = 0
x^2 - 6x + 8 = 0
Delta^2 = (-6)^2-4*1*8
Delta^2 = 36 - 32
Delta^2 = 4
Delta = V4
Delta = 2 > 0 donc deux solutions
X1 = (6 - 2)/2
X1 = 4/2
X1 = 2 milliers d'objets
X2 = (6 + 2) / 2
X2 = 8/2
X2 = 4 milliers d'objets
1 votes
Thanks 1
More Questions From This User
See All
anais29400
January 2021 | 0 Respostas
svp j'ai besoin d' aide
Responda
Anais29400
May 2019 | 0 Respostas
Responda
Anais29400
May 2019 | 0 Respostas
Responda
×
Report "SVP c'est super urgent.... Pergunta de ideia de anais29400"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
1) coût moyen de production :Pour x = 1000, 2000 Et 4000 objets
CM(1000)=C(1000)/1000
CM(1000) = [(1000)^3-6(1000)^2+13*1000] / 1000
=1000^2 - 6*1000 + 13
= 994013 milliers d'euros
CM(2000) =
[(2000)^3-6(2000)^2+13*2000]/2000
= 2000^2 - 12000 + 13
= 3988013 milliers d'euros
CM(4000) =
[(4000)^3-6(4000)^2+13*4000]/4000
= 4000^2 - 24000 + 13
= 15976013 milliers d'euros
2) justifier :
CM(x) = (x^3-6x^2+13x)/x
CM(x) = x(x^2-6x+13)/x
CM(x) = x^2 - 6x + 13
b) CM(x) = m
x^2 - 6x + 13 - m = 0
Delta^2 = (-6)^2-4*1*(13-m)
Delta^2 = 36 - 52 + 4m
Delta^2 = -16 + 4 m
Pour avoir le plus petit il faut que le delta^2 soit égal à 0 donc :
-16 + 4m = 0
4m = 16
m = 16 / 4
m = 4
Le minimum de CM = 4
x^2 - 6x + 13 = 4
x^2 - 6x + 13 - 4 = 0
x^2 - 6x + 9 = 0
Delta^2 = (-6)^2-4*1*9
Delta^2 = 36 - 36
Delta^2 = 0
Donc une solution
X1 = 6/2
X1 = 3 milliers d'objets
3) chaque objet = 5€
CM(x) = 5
x^2 - 6x + 13 = 5
x^2 - 6x + 13 - 5 = 0
x^2 - 6x + 8 = 0
Delta^2 = (-6)^2-4*1*8
Delta^2 = 36 - 32
Delta^2 = 4
Delta = V4
Delta = 2 > 0 donc deux solutions
X1 = (6 - 2)/2
X1 = 4/2
X1 = 2 milliers d'objets
X2 = (6 + 2) / 2
X2 = 8/2
X2 = 4 milliers d'objets