bjr
voir image
ABC est équilatéral, de côté a
CH est la hauteur relative au côté [BC]
Triangle CHB
le triangle CHB est rectangle en H (hauteur)
CB = a (hypothèse)
HB = a/2 (dans un triangle équilatéral une hauteur est aussi médiatrice)
on utilise le théorème de Pythagore
CB² = CH² + HC²
a² = CH² + (a/2)²
CH² = a² - a²/4
CH² = 4a²/4 - a²/4
CH² = 3a²/4
CH = √(3a²/4)
CH = (a√3)/2
Réponse :
Bonjour,
Avant tout, mieux vaut établir un schéma comme dans la pièce-jointe.
Soit ABC le nom du triangle équilatéral.
On sait qu'un triangle équilatéral possède 3 côtés de même longueur.
D'où AB = BC = AC = a
Les hauteurs d'un triangle équilatéral coincident avec leur médiatrice (qui passe perpendiculairement par le milieu d'un côté).
On notera I le point d'intersection de la hauteur issue de B avec AC.
On obtient alors le triangle ABI rectangle en I tel que:
D'après le théorème de Pythagore:
Et comme BI est une longueur, alors elle est positive.
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
bjr
voir image
ABC est équilatéral, de côté a
CH est la hauteur relative au côté [BC]
Triangle CHB
le triangle CHB est rectangle en H (hauteur)
CB = a (hypothèse)
HB = a/2 (dans un triangle équilatéral une hauteur est aussi médiatrice)
on utilise le théorème de Pythagore
CB² = CH² + HC²
a² = CH² + (a/2)²
CH² = a² - a²/4
CH² = 4a²/4 - a²/4
CH² = 3a²/4
CH = √(3a²/4)
CH = (a√3)/2
Réponse :
Bonjour,
Avant tout, mieux vaut établir un schéma comme dans la pièce-jointe.
Soit ABC le nom du triangle équilatéral.
On sait qu'un triangle équilatéral possède 3 côtés de même longueur.
D'où AB = BC = AC = a
Les hauteurs d'un triangle équilatéral coincident avec leur médiatrice (qui passe perpendiculairement par le milieu d'un côté).
On notera I le point d'intersection de la hauteur issue de B avec AC.
On obtient alors le triangle ABI rectangle en I tel que:
D'après le théorème de Pythagore:
Et comme BI est une longueur, alors elle est positive.