Articles
Register
Sign In
Search
nycoleboop
@nycoleboop
August 2022
1
41
Report
Resolva as seguintes equações,com a formula de Bhaskara.
a)[tex] x^{2} -12x+36=0[/tex]
b)[tex] x^{2} +4x+4=0[/tex]
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
PauloLuis
A) Δ = b2
- 4.a.c
Δ = -122
- 4 . 1 . 36
Δ = 144 - 4. 1 . 36
Δ = 0
Há 1 raiz real.
Neste caso, x' = x'':
x = (-b +- √Δ)/2a
x' = (--12 + √0)/2.1
x'' = (--12 - √0)/2.1
x' = 12 / 2
x'' = 12 / 2
x' = 6
x'' = 6
B)
Δ = b2
- 4.a.c
Δ = 42
- 4 . 1 . 4
Δ = 16 - 4. 1 . 4
Δ = 0
Há 1 raiz real.
Neste caso, x' = x'':
x = (-b +- √Δ)/2a
x' = (-4 + √0)/2.1
x'' = (-4 - √0)/2.1
x' = -4 / 2
x'' = -4 / 2
x' = -2
x'' = -2
1 votes
Thanks 1
More Questions From This User
See All
nycoleboop
August 2022 | 0 Respostas
Responda
nycoleboop
August 2022 | 0 Respostas
Responda
nycoleboop
August 2022 | 0 Respostas
Responda
nycoleboop
July 2022 | 0 Respostas
Responda
nycoleboop
July 2022 | 0 Respostas
Responda
nycoleboop
July 2022 | 0 Respostas
Responda
nycoleboop
July 2022 | 0 Respostas
Responda
nycoleboop
July 2022 | 0 Respostas
Passe para o passado. a)Jane is a teacher. b)We are nice. c)I am pilot.
Responda
nycoleboop
July 2022 | 0 Respostas
Passe para o passado. a)Jane is a teacher. b)We are nice. c)I am pilot.
Responda
nycoleboop
July 2022 | 0 Respostas
Responda
×
Report "Resolva as seguintes equações,com a formula de Bhaskara. a)[tex] x^{2} -12x+36=0[/tex] b)[tex] x^{2}.... Pergunta de ideia de nycoleboop"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Δ = -122 - 4 . 1 . 36
Δ = 144 - 4. 1 . 36
Δ = 0
Há 1 raiz real.
Neste caso, x' = x'':
x = (-b +- √Δ)/2a
x' = (--12 + √0)/2.1
x'' = (--12 - √0)/2.1
x' = 12 / 2
x'' = 12 / 2
x' = 6
x'' = 6
B) Δ = b2 - 4.a.c
Δ = 42 - 4 . 1 . 4
Δ = 16 - 4. 1 . 4
Δ = 0
Há 1 raiz real.
Neste caso, x' = x'':
x = (-b +- √Δ)/2a
x' = (-4 + √0)/2.1
x'' = (-4 - √0)/2.1
x' = -4 / 2
x'' = -4 / 2
x' = -2
x'' = -2