Articles
Register
Sign In
Search
kflea3
@kflea3
January 2021
1
62
Report
Urgent
développer et réduire chaque expression à l'aide d'une identité remarquable
(x-2,5) au carré
(1-x)(1+x)
(6+x) au carré
(x-3)(x+3)
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
oussama16
Verified answer
Bonsoir ,
On pose
(a-b)^2=a^2-2×a×b+b^2
Donc :
(X-2,5)^2=x^2-2×X×2,5+(2,5)^2
=x^2-5x+6,25
(A+b)(a-b) =a^2 -b^2
Donc
(1-x)(1+x)=1-x^2
(6+x)^2=6^2+2×6×x+x^2
=36+12x+x^2
(X-3)(x+3)=x^2-9
BONNE soirée
2 votes
Thanks 2
More Questions From This User
See All
kflea3
January 2021 | 0 Respostas
Responda
kflea3
January 2021 | 0 Respostas
Responda
kflea3
January 2021 | 0 Respostas
Responda
kflea3
January 2021 | 0 Respostas
Responda
kflea3
January 2021 | 0 Respostas
Besoin d'aide , c'est urgent (c'est l'exercice 37) Merci d'avance
Responda
kflea3
January 2021 | 0 Respostas
Responda
kflea3
January 2021 | 0 Respostas
bonsoir, jai besoin d'aide pour cette exercice de maths (le 15) pouvait vous m'aider ? merci d'avance
Responda
kflea3
January 2021 | 0 Respostas
bonjour pouvez vous m'aider pour ce exercice de maths (le 14) merci d'avance
Responda
kflea3
January 2021 | 0 Respostas
Responda
kflea3
December 2020 | 0 Respostas
Responda
×
Report "Urgent développer et réduire chaque expression à l'aide d'une identité remarquable (x-2,5) au carr.... Pergunta de ideia de kflea3"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonsoir ,On pose
(a-b)^2=a^2-2×a×b+b^2
Donc :
(X-2,5)^2=x^2-2×X×2,5+(2,5)^2
=x^2-5x+6,25
(A+b)(a-b) =a^2 -b^2
Donc
(1-x)(1+x)=1-x^2
(6+x)^2=6^2+2×6×x+x^2
=36+12x+x^2
(X-3)(x+3)=x^2-9
BONNE soirée