Ao calcularmos o que se pede no problema, encontramos os valores de x e y.
[tex]\large\text{$ \Rightarrow ~x = 13 ~e ~y = 10 $}[/tex]
[tex]\Large\text{$ Sistema ~de ~Equac_{\!\!,}\tilde oes $}[/tex]
[tex]\large\text{$ Equac_{\!\!,}\tilde ao ~de ~2^o ~Grau$}[/tex]
[tex]\large\begin{cases}\sf Difernc_{\!\!,}a= 23 \\\sf Produto = 130\end{cases}[/tex]
===
[tex]\large\begin{cases}\sf x - y = 23 ~~~( I )\\\sf x ~. ~y = 130 ~~( II )\end{cases}[/tex]
Isolar x em ( I )
[tex]\large\begin{cases}\sf x= 23 - y \\\sf x ~. ~y = 130 \end{cases}[/tex]
Substituir o valor de x em ( II )
[tex]\large \text {$x ~. ~y = 130$}\\\\\large \text {$(23 - y) ~. ~y = 130$}\\\\\large \text {$(23 - y) ~. ~y = 130$}\\\\\large \text {$-y^2 + 23y -130 = 0$}[/tex]
Multiplicar por -1, para retirar o sinal negativo de ( -y²)
[tex]\large \text {$-y^2 + 23y -130 = 0 ~~(-1)$}\\\\\large \text {$y^2 - 23y +130 = 0$}[/tex]
Temos uma equação de 2º grau. resolvendo por Bháskara.
[tex]x = \dfrac{-b \pm \sqrt{b^2 - 4 ~. a~.~c}}{2a}[/tex]
[tex]x = \dfrac{-(-23) \pm \sqrt{(-23)^2 - 4 ~. 1~.~130}}{2~.~1} \\\\ x = \dfrac{23 \pm \sqrt{529 - 520}}{2} \\\\x = \dfrac{23 \pm \sqrt{9}}{2} \\\\x = \dfrac{23 \pm 3}{2}\\\\ x' = \dfrac{23 + 3}{2}\\\\ x' = \dfrac{26}{2}\\\\ x' = 13\\\\\\ x'' = \dfrac{23 - 3}{2}\\\\ x'' = \dfrac{20}{2} \\\\x'' = 10 \\\\[/tex]
[tex]S = (13, ~10 )[/tex]
prova:
[tex]\large \text {$x + y = 23$}\\\\\large \text {$13 + 10 = 23$}\\\\\large \text {$23 = 23$}\\\\\\\large \text {$x ~. ~y = 130$}\\\\\large \text {$13 ~. ~10 = 130$}\\\\\large \text {$130=130 $}[/tex]
Para saber mais:
https://brainly.com.br/tarefa/46903584
https://brainly.com.br/tarefa/4527862
https://brainly.com.br/tarefa/26565611
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Ao calcularmos o que se pede no problema, encontramos os valores de x e y.
[tex]\large\text{$ \Rightarrow ~x = 13 ~e ~y = 10 $}[/tex]
[tex]\Large\text{$ Sistema ~de ~Equac_{\!\!,}\tilde oes $}[/tex]
[tex]\large\text{$ Equac_{\!\!,}\tilde ao ~de ~2^o ~Grau$}[/tex]
[tex]\large\begin{cases}\sf Difernc_{\!\!,}a= 23 \\\sf Produto = 130\end{cases}[/tex]
===
[tex]\large\begin{cases}\sf x - y = 23 ~~~( I )\\\sf x ~. ~y = 130 ~~( II )\end{cases}[/tex]
Isolar x em ( I )
[tex]\large\begin{cases}\sf x= 23 - y \\\sf x ~. ~y = 130 \end{cases}[/tex]
Substituir o valor de x em ( II )
[tex]\large \text {$x ~. ~y = 130$}\\\\\large \text {$(23 - y) ~. ~y = 130$}\\\\\large \text {$(23 - y) ~. ~y = 130$}\\\\\large \text {$-y^2 + 23y -130 = 0$}[/tex]
Multiplicar por -1, para retirar o sinal negativo de ( -y²)
[tex]\large \text {$-y^2 + 23y -130 = 0 ~~(-1)$}\\\\\large \text {$y^2 - 23y +130 = 0$}[/tex]
Temos uma equação de 2º grau. resolvendo por Bháskara.
[tex]x = \dfrac{-b \pm \sqrt{b^2 - 4 ~. a~.~c}}{2a}[/tex]
[tex]x = \dfrac{-(-23) \pm \sqrt{(-23)^2 - 4 ~. 1~.~130}}{2~.~1} \\\\ x = \dfrac{23 \pm \sqrt{529 - 520}}{2} \\\\x = \dfrac{23 \pm \sqrt{9}}{2} \\\\x = \dfrac{23 \pm 3}{2}\\\\ x' = \dfrac{23 + 3}{2}\\\\ x' = \dfrac{26}{2}\\\\ x' = 13\\\\\\ x'' = \dfrac{23 - 3}{2}\\\\ x'' = \dfrac{20}{2} \\\\x'' = 10 \\\\[/tex]
[tex]S = (13, ~10 )[/tex]
===
prova:
[tex]\large \text {$x + y = 23$}\\\\\large \text {$13 + 10 = 23$}\\\\\large \text {$23 = 23$}\\\\\\\large \text {$x ~. ~y = 130$}\\\\\large \text {$13 ~. ~10 = 130$}\\\\\large \text {$130=130 $}[/tex]
===
Para saber mais:
https://brainly.com.br/tarefa/46903584
https://brainly.com.br/tarefa/4527862
https://brainly.com.br/tarefa/26565611