Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\mathsf{\left(\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\right)}[/tex]
[tex]\mathsf{\left(\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\right).\left(\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}\right)}[/tex]
[tex]\mathsf{\left(\dfrac{(\sqrt{3} - \sqrt{2})^2}{(\sqrt{3} + \sqrt{2}).(\sqrt{3} - \sqrt{2})}}\right)}[/tex]
[tex]\mathsf{\left(\dfrac{(\sqrt{3})^2 - 2\sqrt{3}\sqrt{2} + (\sqrt{2})^2}{(\sqrt{3})^2 - (\sqrt{2})^2}\right)}[/tex]
[tex]\mathsf{\left(\dfrac{(3 - 2\sqrt{6} + 2}{3 - 2}\right)}[/tex]
[tex]\boxed{\boxed{\mathsf{\left(\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\right) = 5 - 2\sqrt{6}}}}[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\mathsf{\left(\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\right)}[/tex]
[tex]\mathsf{\left(\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\right).\left(\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}\right)}[/tex]
[tex]\mathsf{\left(\dfrac{(\sqrt{3} - \sqrt{2})^2}{(\sqrt{3} + \sqrt{2}).(\sqrt{3} - \sqrt{2})}}\right)}[/tex]
[tex]\mathsf{\left(\dfrac{(\sqrt{3})^2 - 2\sqrt{3}\sqrt{2} + (\sqrt{2})^2}{(\sqrt{3})^2 - (\sqrt{2})^2}\right)}[/tex]
[tex]\mathsf{\left(\dfrac{(3 - 2\sqrt{6} + 2}{3 - 2}\right)}[/tex]
[tex]\boxed{\boxed{\mathsf{\left(\dfrac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\right) = 5 - 2\sqrt{6}}}}[/tex]