A partir dos estudos, entendemos que o Teorema de Green é um teorema de dimensão dois, ele se passa no plano, isto é, os domínios estão no plano. Lembrando, também, que o campo vetorial é composto por duas variáveis, x e y. Veja o seguinte exemplo:



stack F left parenthesis x comma y right parenthesis space equals space left parenthesis F subscript 1 left parenthesis x comma y right parenthesis comma space F subscript 2 left parenthesis x comma y right parenthesis right parenthesis with bar on top



Entendendo o Teorema de Green, podemos afirmar o seguinte sobre o campo vetorial C1:

a.
Todos os campos, as curvas e os domínios sempre precisam supor diferentes classes de diferenciabilidade e derivabilidade, porque, segundo o Teorema de Green, nós precisamos apenas derivar essas componentes. E é muito importante lembrar que, para que as teorias de integração funcionem bem, as componentes precisam ser contínuas, porque eu derivo e as derivadas passam a ser contínuas.

b.
Todos os campos, as curvas e os domínios sempre precisam supor diferentes classes de diferenciabilidade e derivabilidade, porque, segundo o Teorema de Green, nós precisamos derivar essas componentes e depois integrar. E é muito importante lembrar que, para que as teorias de integração funcionem bem, as componentes não precisam ser contínuas, porque eu derivo e as derivadas passam a ser contínuas após a derivação.

c.
Todos os campos, as curvas e os domínios sempre precisam supor diferentes classes de diferenciabilidade e derivabilidade, porque, segundo o Teorema de Green, nós precisamos derivar essas componentes e depois integrar. E é muito importante lembrar que, para que as teorias de integração funcionem bem, as componentes precisam ser paralelas.

d.
Todos os campos, as curvas e os domínios sempre precisam supor diferentes classes de diferenciabilidade e derivabilidade, porque, segundo o Teorema de Green, nós precisamos derivar essas componentes e depois integrar. E é muito importante lembrar que, para que as teorias de integração funcionem bem, as componentes precisam ser contínuas, porque eu derivo e as derivadas passam a ser contínuas.

e.
Todos os campos, as curvas e os domínios sempre precisam supor diferentes classes de diferenciabilidade e derivabilidade, porque, segundo o Teorema de Green, nós precisamos derivar essas componentes e depois integrar. E é muito importante lembrar que, para que as teorias de integração funcionem bem, os domínios precisam ser iguais.
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Lista de comentários


More Questions From This User See All
Nos estudos voltados para a matemática, entendemos que o Teorema de Green relaciona integrais de linha no decorrer de uma curva fechada em um plano frente a uma integral dupla em uma região delimitada por uma curva. Em suma, o teorema estabelece uma relação entre a integral dupla de uma região e a integral de linha do sistema ao longo de sua fronteira. Para verificarmos o Teorema de Green em uma dada função, é objetivamente coerente analisarmos as seguintes definições. a. Em uma determinada função em que precisamos verificar o Teorema de Green, precisamos saber que ele diz que calculando, por exemplo, três integrais, precisamos identificar se temos: curva aberta, curva positivamente orientada e campo bem definido dentro da curva. b. Em uma determinada função em que precisamos verificar o Teorema de Green, precisamos saber que ele diz que calculando, por exemplo, quatro integrais, precisamos identificar se temos: curva aberta, curva negativamente orientada e campo bem definido dentro da curva. c. Em uma determinada função em que precisamos verificar o Teorema de Green, precisamos saber que ele diz que calculando, por exemplo, duas integrais, precisamos identificar se temos: curva fechada, curva positivamente orientada e campo bem definido dentro da curva. d. Em uma determinada função em que precisamos verificar o Teorema de Green, precisamos saber que ele diz que calculando, por exemplo, duas integrais, precisamos identificar se temos: curva aberta, curva positivamente orientada e campo bem definido dentro da curva. e. Em uma determinada função em que precisamos verificar o Teorema de Green, precisamos saber que ele diz que calculando, por exemplo, duas integrais, precisamos identificar se temos: curva fechada, curva negativamente orientada e campo bem definido dentro da curva.
Responda

Helpful Social

Copyright © 2025 ELIBRARY.TIPS - All rights reserved.