Articles
Register
Sign In
Search
Sarah146
@Sarah146
May 2019
1
80
Report
Aider svp besoin pour lundi merci
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
anylor
Bonjour
méthode : pour mettre un nombre complexe sous sa forme algébrique, on peut le multiplier par la quantité conjuguée.
ou développer (selon les cas)
a)
(5+2i)(3+i) =2i²+11i+15
=-2+11i+15
=13+11i
b)
-1/i = -1/i × i/i = -i/i² = -i/-1
=i
c)
(3-i)/(1+i) =(3-i)× (1-i)
/ (1+i)
×
(1-i)
=3-3i-i+i² / 1-i²
=3-4i-1 / 1 +1
=2-4i /2
= 1- 2i
d)
(1+i)^4
=(1+i)² ×(1+i)²
= (1+2i+i²) ×
(1+2i+i²)
= 1 +2i + i² +2i +4i² +2i³ +i²+2i³+i^4
= 1 +2i -1 +2i -4 -2i -1-2i +1
= - 4
0 votes
Thanks 1
More Questions From This User
See All
sarah146
January 2021 | 0 Respostas
Responda
sarah146
January 2021 | 0 Respostas
Responda
sarah146
January 2021 | 0 Respostas
Responda
Sarah146
May 2019 | 0 Respostas
Responda
Sarah146
May 2019 | 0 Respostas
Responda
Sarah146
May 2019 | 0 Respostas
Responda
Sarah146
May 2019 | 0 Respostas
Mercredi toujours merci
Responda
Sarah146
May 2019 | 0 Respostas
St p toujours pour mercredi merci
Responda
Sarah146
May 2019 | 0 Respostas
Coucou devoir pour mercredi svp merci
Responda
Sarah146
May 2019 | 0 Respostas
Responda
×
Report "Aider svp besoin pour lundi merci.... Pergunta de ideia de Sarah146"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
méthode : pour mettre un nombre complexe sous sa forme algébrique, on peut le multiplier par la quantité conjuguée.
ou développer (selon les cas)
a)
(5+2i)(3+i) =2i²+11i+15
=-2+11i+15
=13+11i
b)
-1/i = -1/i × i/i = -i/i² = -i/-1
=i
c)
(3-i)/(1+i) =(3-i)× (1-i) / (1+i) ×(1-i)
=3-3i-i+i² / 1-i²
=3-4i-1 / 1 +1
=2-4i /2
= 1- 2i
d)
(1+i)^4
=(1+i)² ×(1+i)²
= (1+2i+i²) × (1+2i+i²)
= 1 +2i + i² +2i +4i² +2i³ +i²+2i³+i^4
= 1 +2i -1 +2i -4 -2i -1-2i +1
= - 4