Articles
Register
Sign In
Search
Kelyna972
@Kelyna972
May 2019
2
90
Report
Bjr ecq quelqu'un peux m'aider svp
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
loulakar
Verified answer
Bonjour,
E(x) = (3x - 4)^2 - (2x - 5)^2
a) developper :
E(x) = 9x^2 - 24x + 16 - (4x^2 - 20x + 25)
E(x) = 5x^2 - 4x - 9
b) factoriser :
E(x) = a^2 - b^2 = (a - b)(a + b)
E(x) = (3x - 4 - 2x + 5)(3x - 4 + 2x - 5)
E(x) = (x + 1)(5x - 9)
2) résoudre :
E(x) = 0
(x + 1)(5x - 9) = 0
Pour qu’un produit soit nul il faut qu’au moins l’un de ses facteurs soit nul :
x + 1 = 0
x = -1
Ou
5x - 9 = 0
5x = 9
x = 9/5
S = {-1;9/5}
E(x) = -9
5x^2 - 4x - 9 = -9
5x^2 - 4x - 9 + 9 = 0
5x^2 - 4x = 0
x(5x - 4) = 0
x = 0
Ou
5x - 4 = 0
5x = 4
x = 4/5
S = {0;4/5}
E(x) = (2x - 5)(x + 1)
(x + 1)(5x - 9) = (2x - 5)(x + 1)
(x + 1)(5x - 9) - (x + 1)(2x - 5) = 0
(x + 1)(5x - 9 - 2x + 5) = 0
(x + 1)(3x - 4) = 0
x + 1 = 0
x = -1
Ou
3x - 4 = 0
3x = 4
x = 4/3
S = {-1;4/3}
0 votes
Thanks 1
taalbabachir
Verified answer
Soit le polynôme E(x) = (3x - 4)² - (2x - 5)² Forme 1
a) Développer , réduire et ordonner E(x) Forme 2
E(x) = (3x - 4)² - (2x - 5)²
= (9x² - 24x + 16) - (4x² - 20x + 25)
= 9x² - 24x + 16 - 4x² + 20x - 25
= 5x² - 4x - 9
identité remarquable (a - b)² = a² - 2ab + b²
b) Factoriser E(x) Forme 3
E(x) = (3x - 4)² - (2x - 5)² identité remarquable a² - b² = (a + b)(a - b)
E(x) = (3x - 4)² - (2x - 5)² = (3x - 4 + 2x - 5)(3x - 4 - 2x + 5)
= (5x - 9)(x + 1)
2. A l'aide de la forme la plus appropriée, résoudre les équations suivantes:
a) E(x) = 0 donc on utilise la forme 3 factorisée
E(x) = (5x - 9)(x + 1) = 0
5x - 9 = 0 ⇒ 5x = 9 ⇒ x = 9/5 ou
x + 1 = 0 ⇒ x = - 1
b) E(x) = - 9 ; on utilise la forme 2 développée
E(x) = 5x² - 4x - 9 = - 9 ⇔ 5x² - 4x = 0
x(5x - 4) = 0 ⇒ x = 0 ou 5x - 4 = 0 ⇒ x = 4/5
c) E(x) = (2x - 5)(x + 1) on utilise la forme 3 factorisée
E(x) = (2x - 5)(x + 1) = (5x - 9)(x + 1)
= (2x - 5)(x + 1) - (5x - 9)(x + 1) = 0
= (x + 1)(2x - 5 - 5x + 9) = 0
= (x + 1)(4 - 3x) = 0
x + 1 = 0 ⇒ x = - 1 ou 4 - 3x = 0 ⇒ x = 4/3
1 votes
Thanks 1
More Questions From This User
See All
kelyna972
January 2021 | 0 Respostas
Responda
kelyna972
January 2021 | 0 Respostas
Responda
kelyna972
January 2021 | 0 Respostas
Responda
kelyna972
January 2021 | 0 Respostas
Responda
kelyna972
December 2020 | 0 Respostas
Responda
Kelyna972
June 2019 | 0 Respostas
Responda
Kelyna972
June 2019 | 0 Respostas
Responda
Kelyna972
June 2019 | 0 Respostas
Responda
Kelyna972
May 2019 | 0 Respostas
Responda
Kelyna972
May 2019 | 0 Respostas
Bonjour est ce que quelqu'un peux m'aider svp je n'arrive pas
Responda
×
Report "Bjr ecq quelqu'un peux m'aider svp.... Pergunta de ideia de Kelyna972"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,E(x) = (3x - 4)^2 - (2x - 5)^2
a) developper :
E(x) = 9x^2 - 24x + 16 - (4x^2 - 20x + 25)
E(x) = 5x^2 - 4x - 9
b) factoriser :
E(x) = a^2 - b^2 = (a - b)(a + b)
E(x) = (3x - 4 - 2x + 5)(3x - 4 + 2x - 5)
E(x) = (x + 1)(5x - 9)
2) résoudre :
E(x) = 0
(x + 1)(5x - 9) = 0
Pour qu’un produit soit nul il faut qu’au moins l’un de ses facteurs soit nul :
x + 1 = 0
x = -1
Ou
5x - 9 = 0
5x = 9
x = 9/5
S = {-1;9/5}
E(x) = -9
5x^2 - 4x - 9 = -9
5x^2 - 4x - 9 + 9 = 0
5x^2 - 4x = 0
x(5x - 4) = 0
x = 0
Ou
5x - 4 = 0
5x = 4
x = 4/5
S = {0;4/5}
E(x) = (2x - 5)(x + 1)
(x + 1)(5x - 9) = (2x - 5)(x + 1)
(x + 1)(5x - 9) - (x + 1)(2x - 5) = 0
(x + 1)(5x - 9 - 2x + 5) = 0
(x + 1)(3x - 4) = 0
x + 1 = 0
x = -1
Ou
3x - 4 = 0
3x = 4
x = 4/3
S = {-1;4/3}
Verified answer
Soit le polynôme E(x) = (3x - 4)² - (2x - 5)² Forme 1a) Développer , réduire et ordonner E(x) Forme 2
E(x) = (3x - 4)² - (2x - 5)²
= (9x² - 24x + 16) - (4x² - 20x + 25)
= 9x² - 24x + 16 - 4x² + 20x - 25
= 5x² - 4x - 9
identité remarquable (a - b)² = a² - 2ab + b²
b) Factoriser E(x) Forme 3
E(x) = (3x - 4)² - (2x - 5)² identité remarquable a² - b² = (a + b)(a - b)
E(x) = (3x - 4)² - (2x - 5)² = (3x - 4 + 2x - 5)(3x - 4 - 2x + 5)
= (5x - 9)(x + 1)
2. A l'aide de la forme la plus appropriée, résoudre les équations suivantes:
a) E(x) = 0 donc on utilise la forme 3 factorisée
E(x) = (5x - 9)(x + 1) = 0
5x - 9 = 0 ⇒ 5x = 9 ⇒ x = 9/5 ou
x + 1 = 0 ⇒ x = - 1
b) E(x) = - 9 ; on utilise la forme 2 développée
E(x) = 5x² - 4x - 9 = - 9 ⇔ 5x² - 4x = 0
x(5x - 4) = 0 ⇒ x = 0 ou 5x - 4 = 0 ⇒ x = 4/5
c) E(x) = (2x - 5)(x + 1) on utilise la forme 3 factorisée
E(x) = (2x - 5)(x + 1) = (5x - 9)(x + 1)
= (2x - 5)(x + 1) - (5x - 9)(x + 1) = 0
= (x + 1)(2x - 5 - 5x + 9) = 0
= (x + 1)(4 - 3x) = 0
x + 1 = 0 ⇒ x = - 1 ou 4 - 3x = 0 ⇒ x = 4/3