Articles
Register
Sign In
Search
1D2010
@1D2010
May 2019
1
129
Report
Bonjour pouvez vous m'aider ...j'ai fait tous les questions sauf le dernier 4
Merci d'avance !
(je crois que j'ai besoin de la décomposer (on a pas déjà fait la limite ))
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
on pose u(x) = √(x + 1) sur [-1;+∞[ et v(x) = √(x)
u et v sont croissantes sur leur ensemble de définition
g(x) = v[u²(x) + 2 - 2u(x)]
g(x) = v[(u(x) - 1)² + 1]
Sur ]-1;+∞[, u(x) - 1 est croissante et :
-1 ≤ u(x) - 1 ≤ 0 pour x ∈ [-1;0]
u(x) ≥ 0 pour x ∈ [0;+∞[
donc [u(x) - 1]² décroissante sur ]-1;0] puis croissante sur [0;+∞[
de même pour [u(x) - 1]² + 1
donc g(x) = v[[u(x) - 1]² + 1] décroissante sur ]-1;0] puis croissante sur [0;+∞[
1 votes
Thanks 1
1D2010
mais où est la décomposition de g on doit l'écrire sous la forme de vou
More Questions From This User
See All
1D2010
June 2021 | 0 Respostas
Responda
1D2010
June 2021 | 0 Respostas
Responda
1D2010
June 2021 | 0 Respostas
Responda
1D2010
June 2021 | 0 Respostas
Responda
1D2010
January 2021 | 0 Respostas
Responda
1D2010
January 2021 | 0 Respostas
Responda
1D2010
January 2021 | 0 Respostas
Responda
1D2010
January 2021 | 0 Respostas
Salut tout le monde! !C vraiment trop urgent! !!Merci d'avance.
Responda
1D2010
January 2021 | 0 Respostas
Responda
1D2010
January 2021 | 0 Respostas
Responda
×
Report "Bonjour pouvez vous m'aider ...j'ai fait tous les questions sauf le dernier 4Merci d'avance !(je cro.... Pergunta de ideia de 1D2010"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,on pose u(x) = √(x + 1) sur [-1;+∞[ et v(x) = √(x)
u et v sont croissantes sur leur ensemble de définition
g(x) = v[u²(x) + 2 - 2u(x)]
g(x) = v[(u(x) - 1)² + 1]
Sur ]-1;+∞[, u(x) - 1 est croissante et :
-1 ≤ u(x) - 1 ≤ 0 pour x ∈ [-1;0]
u(x) ≥ 0 pour x ∈ [0;+∞[
donc [u(x) - 1]² décroissante sur ]-1;0] puis croissante sur [0;+∞[
de même pour [u(x) - 1]² + 1
donc g(x) = v[[u(x) - 1]² + 1] décroissante sur ]-1;0] puis croissante sur [0;+∞[