bonjour
g (x) = ( x² - 1) ( 2 x + 1 )
u = x² - 1 donc u ' = 2 x
v = 2 x + 1 donc v ' = 2
g '( x ) = [ 2 x ( 2 x + 1 ) - ( x² - 1 ) ( 2)] / ( 2 x - 1 )²
g ' (x) = [ 4 x² + 2 x - ( 2 x² - 2 )] / ( 2 x - 1 )²
g ' ( x ) = (4 x² + 2 x - 2 x² + 2 ) / ( 2 x - 1 )²
g' (x) = ( 2 x² + 2 x + 2 ) / ( 2 x - 1 )²
g ' (x) = 2 ( x² + 2 + 1 ) / ( 2 x - 1 )²
x 0 + ∞
g' (x) +
g (x) croissante
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
bonjour
g (x) = ( x² - 1) ( 2 x + 1 )
u = x² - 1 donc u ' = 2 x
v = 2 x + 1 donc v ' = 2
g '( x ) = [ 2 x ( 2 x + 1 ) - ( x² - 1 ) ( 2)] / ( 2 x - 1 )²
g ' (x) = [ 4 x² + 2 x - ( 2 x² - 2 )] / ( 2 x - 1 )²
g ' ( x ) = (4 x² + 2 x - 2 x² + 2 ) / ( 2 x - 1 )²
g' (x) = ( 2 x² + 2 x + 2 ) / ( 2 x - 1 )²
g ' (x) = 2 ( x² + 2 + 1 ) / ( 2 x - 1 )²
x 0 + ∞
g' (x) +
g (x) croissante