Articles
Register
Sign In
Search
MzelleCelia
@MzelleCelia
January 2021
1
153
Report
Bonjour, pouvez vous m'aider s'il vous plait ?
J'ai besoin que l'on me guide pour résoudre ce problème ci
Merci
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
Variations de (g-f) :
(g-f)'(x) = g'(x) - f'(x)
Or g'(x) ≥ f'(x) sur I
Donc g'(x) - f'(x) ≥ 0
⇒ (g - f) est croissante sur I
⇒ Pour tout x ∈ [0;1], g(x) - f(x) ≥ 0
⇔ f(x) ≤ g(x)
0 votes
Thanks 2
More Questions From This User
See All
MzelleCelia
June 2021 | 0 Respostas
Responda
MzelleCelia
June 2021 | 0 Respostas
Responda
MzelleCelia
February 2021 | 0 Respostas
Responda
MzelleCelia
January 2021 | 0 Respostas
Responda
MzelleCelia
January 2021 | 0 Respostas
Responda
MzelleCelia
January 2021 | 0 Respostas
Responda
MzelleCelia
January 2021 | 0 Respostas
Responda
MzelleCelia
January 2021 | 0 Respostas
Responda
MzelleCelia
January 2021 | 0 Respostas
Responda
MzelleCelia
January 2021 | 0 Respostas
Responda
×
Report "Bonjour, pouvez vous m'aider s'il vous plait ?J'ai besoin que l'on me guide pour résoudre ce problèm.... Pergunta de ideia de MzelleCelia"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,Variations de (g-f) :
(g-f)'(x) = g'(x) - f'(x)
Or g'(x) ≥ f'(x) sur I
Donc g'(x) - f'(x) ≥ 0
⇒ (g - f) est croissante sur I
⇒ Pour tout x ∈ [0;1], g(x) - f(x) ≥ 0
⇔ f(x) ≤ g(x)