Articles
Register
Sign In
Search
1D2010
@1D2010
May 2019
1
137
Report
Bonjour svp aider moi svp c'est les fonctions
merci d'avance
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
1) ∀x∈R, x ≥ E(x)
⇒ x/3 ≥ E(x/3)
⇒ x ≥ 3E(x/3)
⇒ x - 3E(x/3) ≥ 0
⇒ Df = R
∀k∈N*,
f(x + 3k) = √[x + 3k - 3E((x + 3k)/3)]
= √[x + 3k - 3E(x/3 + k)]
= √[x + 3k - 3E(x/3) - 3E(k)]
= √[x + 3k - 3E(x/3) - 3k]
= f(x)
donc f périodique de période T = 3
2) ∀x∈R, il existe n∈Z / n ≤ x < n+1 (et E(x) = n)
⇒ ∀ x∈[n;n+1[, u(x) = x - 3E(x/3) = x - 3E(n/3) est une fonction affine croissante et positive
Et v(x) = √x est croissante sur R+.
Donc f est croissante sur [n;n+1[
⇒ f(0) = 0 et ∀ x ∈ [0;3[, f(x) ≤ √3
3) ∀ x ∈ [0;3[, f(x) = √[x - 3E(x/3)] = √[x - 3x0] = √x
4) ci-joint
1 votes
Thanks 1
More Questions From This User
See All
1D2010
June 2021 | 0 Respostas
Responda
1D2010
June 2021 | 0 Respostas
Responda
1D2010
June 2021 | 0 Respostas
Responda
1D2010
June 2021 | 0 Respostas
Responda
1D2010
January 2021 | 0 Respostas
Responda
1D2010
January 2021 | 0 Respostas
Responda
1D2010
January 2021 | 0 Respostas
Responda
1D2010
January 2021 | 0 Respostas
Salut tout le monde! !C vraiment trop urgent! !!Merci d'avance.
Responda
1D2010
January 2021 | 0 Respostas
Responda
1D2010
January 2021 | 0 Respostas
Responda
×
Report "Bonjour svp aider moi svp c'est les fonctionsmerci d'avance.... Pergunta de ideia de 1D2010"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,1) ∀x∈R, x ≥ E(x)
⇒ x/3 ≥ E(x/3)
⇒ x ≥ 3E(x/3)
⇒ x - 3E(x/3) ≥ 0
⇒ Df = R
∀k∈N*,
f(x + 3k) = √[x + 3k - 3E((x + 3k)/3)]
= √[x + 3k - 3E(x/3 + k)]
= √[x + 3k - 3E(x/3) - 3E(k)]
= √[x + 3k - 3E(x/3) - 3k]
= f(x)
donc f périodique de période T = 3
2) ∀x∈R, il existe n∈Z / n ≤ x < n+1 (et E(x) = n)
⇒ ∀ x∈[n;n+1[, u(x) = x - 3E(x/3) = x - 3E(n/3) est une fonction affine croissante et positive
Et v(x) = √x est croissante sur R+.
Donc f est croissante sur [n;n+1[
⇒ f(0) = 0 et ∀ x ∈ [0;3[, f(x) ≤ √3
3) ∀ x ∈ [0;3[, f(x) = √[x - 3E(x/3)] = √[x - 3x0] = √x
4) ci-joint