Réponse :
bjr
Explications étape par étape
abusons de la relation de Chasles
comme ABCD est un parallelogramme de centre O
O est le centre du vecteur AC
donc AO+OC = AC et OC = AO
donc
2AO = AC
d autre part
2 AB + 2 AD - AC = 2AB + 2AD + CA
= AB + AB + AD + AD + CA
= AB + AB + AD + CD
[ car AB = DC comme ABCD est un parallelogramme ]
= DC + DC + AD + CD
[ car DC + CD = 0 ]
= AD + DC
= AC
2 AB + 2 AD - AC = 2AO
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Réponse :
bjr
Explications étape par étape
abusons de la relation de Chasles
comme ABCD est un parallelogramme de centre O
O est le centre du vecteur AC
donc AO+OC = AC et OC = AO
donc
2AO = AC
d autre part
2 AB + 2 AD - AC = 2AB + 2AD + CA
= AB + AB + AD + AD + CA
= AB + AB + AD + CD
[ car AB = DC comme ABCD est un parallelogramme ]
= DC + DC + AD + CD
[ car DC + CD = 0 ]
= AD + DC
= AC
donc
2 AB + 2 AD - AC = 2AO